Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Deep Boltzmann Networks with Sparse Ising Machines (2303.10728v2)

Published 19 Mar 2023 in cs.ET, cs.LG, and cs.NE

Abstract: The slowing down of Moore's law has driven the development of unconventional computing paradigms, such as specialized Ising machines tailored to solve combinatorial optimization problems. In this paper, we show a new application domain for probabilistic bit (p-bit) based Ising machines by training deep generative AI models with them. Using sparse, asynchronous, and massively parallel Ising machines we train deep Boltzmann networks in a hybrid probabilistic-classical computing setup. We use the full MNIST and Fashion MNIST (FMNIST) dataset without any downsampling and a reduced version of CIFAR-10 dataset in hardware-aware network topologies implemented in moderately sized Field Programmable Gate Arrays (FPGA). For MNIST, our machine using only 4,264 nodes (p-bits) and about 30,000 parameters achieves the same classification accuracy (90%) as an optimized software-based restricted Boltzmann Machine (RBM) with approximately 3.25 million parameters. Similar results follow for FMNIST and CIFAR-10. Additionally, the sparse deep Boltzmann network can generate new handwritten digits and fashion products, a task the 3.25 million parameter RBM fails at despite achieving the same accuracy. Our hybrid computer takes a measured 50 to 64 billion probabilistic flips per second, which is at least an order of magnitude faster than superficially similar Graphics and Tensor Processing Unit (GPU/TPU) based implementations. The massively parallel architecture can comfortably perform the contrastive divergence algorithm (CD-n) with up to n = 10 million sweeps per update, beyond the capabilities of existing software implementations. These results demonstrate the potential of using Ising machines for traditionally hard-to-train deep generative Boltzmann networks, with further possible improvement in nanodevice-based realizations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.