Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical inference for association studies in the presence of binary outcome misclassification (2303.10215v3)

Published 17 Mar 2023 in stat.ME

Abstract: In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of ''label switching'' and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log-likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).

Summary

We haven't generated a summary for this paper yet.