Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and statistical inference for semidiscrete optimal transport maps (2303.10155v3)

Published 17 Mar 2023 in math.ST, math.PR, and stat.TH

Abstract: We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) from a known absolutely continuous reference distribution onto an unknown finitely discrete target distribution. We derive limit distributions for the $Lp$-error with arbitrary $p \in [1,\infty)$ and for linear functionals of the empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, whose explicit density is derived, while the latter attains asymptotic normality. For both cases, we also establish consistency of the nonparametric bootstrap. The derivation of our limit theorems relies on new stability estimates of functionals of the OT map with respect to the dual potential vector, which may be of independent interest. We also discuss applications of our limit theorems to the construction of confidence sets for the OT map and inference for a maximum tail correlation. Finally, we show that, while the empirical OT map does not possess nontrivial weak limits in the $L2$ space, it satisfies a central limit theorem in a dual H\"{o}lder space, and the Gaussian limit law attains the asymptotic efficiency bound.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, 2008.
  2. Minkowski-type theorems and least-squares clustering. Algorithmica, 20:61–76, 1998.
  3. Asymptotics for semidiscrete entropic optimal transport. SIAM Journal on Mathematical Analysis, 54(2):1718–1741, 2022.
  4. Franz Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM Journal on Computing, 16(1):78–96, 1987.
  5. Center-outward quantiles and the measurement of multivariate risk. Insurance: Mathematics and Economics, 95:79–100, 2020.
  6. Sergey G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. The Annals of Probability, 25(1):184–205, 1997.
  7. Quantitative stability in the geometry of semi-discrete optimal transport. International Mathematics Research Notices, 2022(10):7354–7389, 2022.
  8. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013.
  9. Sergey G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. The Annals of Probability, 27(4):1903–1921, 1999.
  10. Adrian Bowyer. Computing dirichlet tessellations. The computer journal, 24(2):162–166, 1981.
  11. Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 44(4):375–417, 1991.
  12. Vector quantile regression: an optimal transport approach. The Annals of Statistics, 44(3):1165–1192, 2016.
  13. Detailed proof of Nazarov’s inequality. arXiv preprint arXiv:1711.10696, 2017.
  14. Generic inference on quantile and quantile effect functions for discrete outcomes. Journal of the American Statistical Association, 115(529):123–137, 2020.
  15. Monge–Kantorovich depth, quantiles, ranks and signs. The Annals of Statistics, 45(1):223–256, 2017.
  16. CGAL Consortium. Cgal: Computational geometry algorithms library, 1996.
  17. Convergence rate of general entropic optimal transport costs. arXiv preprint arXiv:2206.03347, 2022.
  18. Probability Theory: Independence, Interchangeability, Martingales. Springer Science & Business Media, 2003.
  19. Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, volume 26, 2013.
  20. Central limit theorems for semidiscrete Wasserstein distances. arXiv preprint arXiv:2202.06380, 2022.
  21. Eustasio del Barrio and Jean-Michel Loubes. Central limit theorems for empirical transportation cost in general dimension. The Annals of Probability, 47(2):926 – 951, 2019.
  22. Blue noise through optimal transport. ACM Transactions on Graphics (TOG), 31(6):1–11, 2012.
  23. Rates of estimation of optimal transport maps using plug-in estimators via barycentric projections. Advances in Neural Information Processing Systems, 34:29736–29753, 2021.
  24. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph., 34(4):50–1, 2015.
  25. Local Properties of Distributions of Stochastic Functionals. Translation of Mathematical Monographs. American Mathematical Society, 1998.
  26. Optimal transport map estimation in general function spaces. arXiv preprint arXiv:2212.03722, 2022.
  27. Richard M. Dudley. The speed of mean Glivenko-Cantelli convergence. The Annals of Mathematical Statistics, 40(1):40–50, 1969.
  28. Lutz Dümbgen. On nondifferentiable functions and the bootstrap. Probability Theory and Related Fields, 95:125–140, 1993.
  29. Measure Theory and Fine Properties of Functions. CRC Press, 1991.
  30. Comonotonic measures of multivariate risks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 22(1):109–132, 2012.
  31. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 162(3):707–738, 2015.
  32. Inference on directionally differentiable functions. The Review of Economic Studies, 86:377–412, 2019.
  33. Nonlinear Time Series: Nonparametric and Parametric Methods, volume 20. Springer, 2003.
  34. Limit distribution theory for smooth p𝑝pitalic_p-Wasserstein distances. arXiv preprint arXiv:2203.00159, 2022.
  35. Limit theorems for entropic optimal transport maps and the sinkhorn divergence. arXiv preprint arXiv:2207.08683, 2022.
  36. A Lagrangian scheme à la Brenier for the incompressible Euler equations. Foundations of Computational Mathematics, 18(4):835–865, 2018.
  37. Multivariate ranks and quantiles using optimal transport: Consistency, rates and nonparametric testing. The Annals of Statistics, 50(2):1012–1037, 2022.
  38. Weak limits of entropy regularized optimal transport; potentials, plans and divergences. arXiv preprint: arXiv 2207.07427, 2022.
  39. Distribution and quantile functions, ranks and signs in dimension d𝑑ditalic_d: A measure transportation approach. The Annals of Statistics, 49(2):1139–1165, 2021.
  40. Minimax estimation of smooth optimal transport maps. The Annals of Statistics, 49(2):1166–1194, 2021.
  41. Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case. Mathematical Methods of Operations Research, 92(1):133–163, 2020.
  42. Nonparametric confidence set estimation. Mathematical Methods of Statistics, 12(4):410–428, 2003.
  43. Kengo Kato. A note on moment convergence of bootstrap m-estimators. Statistics & Decisions, 28(1):51–61, 2011.
  44. Isoperimetric problems for convex bodies and a localization lemma. Discrete & Computational Geometry, 13:541–559, 1995.
  45. Convergence of a Newton algorithm for semi-discrete optimal transport. Journal of the European Mathematical Society, 21(9):2603–2651, 2019.
  46. On the optimal mapping of distributions. Journal of Optimization Theory and Applications, 43:39–49, 1984.
  47. Hans R. Kunsch. The Jackknife and the Bootstrap for General Stationary Observations. The Annals of Statistics, 17(3):1217 – 1241, 1989.
  48. Shigeo Kusuoka. On law invariant coherent risk measures. Advances in mathematical economics, pages 83–95, 2001.
  49. S. N. Lahiri. Resampling Methods for Dependent Data. Springer Science & Business Media, 2013.
  50. Bruno Lévy. A numerical algorithm for l⁢_𝑙_l\_italic_l _{2222} semi-discrete optimal transport in 3d. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 49(6):1693–1715, 2015.
  51. Geogram: a library for geometric algorithms. 2015.
  52. Pysdot: semi-discrete optimal transportation tools, 2019. https://github.com/sd-ot/pysdot.
  53. Notions of optimal transport theory and how to implement them on a computer. Computers & Graphics, 72:135–148, 2018.
  54. Plugin estimation of smooth optimal transport maps. arXiv preprint arXiv:2107.12364, 2021.
  55. Quentin Mérigot. A multiscale approach to optimal transport. In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.
  56. Quantitative risk management: concepts, techniques and tools-revised edition. Princeton university press, 2015.
  57. Toshio Mikami. Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probability theory and related fields, 129(2):245–260, 2004.
  58. Emanuel Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Inventiones mathematicae, 177(1):1–43, 2009.
  59. Bojan Mohar. Eigenvalues, diameter, and mean distance in graphs. Graphs and combinatorics, 7(1):53–64, 1991.
  60. José A. F. Machado and J. M. C. Santos Silva. Quantiles for counts. Journal of the American Statistical Association, 100(472):1226–1237, 2005.
  61. Estimation of wasserstein distances in the spiked transport model. Bernoulli, 28(4):2663–2688, 2022.
  62. Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.
  63. Debiaser beware: Pitfalls of centering regularized transport maps. arXiv preprint arXiv:2202.08919, 2022.
  64. Minimax estimation of discontinuous optimal transport maps: The semi-discrete case. arXiv preprint arXiv:2301.11302, 2023.
  65. Entropic estimation of optimal transport maps. arXiv preprint arXiv:2109.12004, 2021.
  66. An invitation to statistics in Wasserstein space. Springer Nature, 2020.
  67. Werner Römisch. Delta method, infinite dimensional. In Encyclopedia of Statistical Sciences. Wiley, 2004.
  68. On the sample complexity of entropic optimal transport. arXiv preprint arXiv: 2206.13472, 2022.
  69. Ludger Rüschendorf. Law invariant convex risk measures for portfolio vectors. Statistics & Risk Modeling, 24(1):97–108, 2006.
  70. Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, 2015.
  71. Filippo Santambrogio. {{\{{Euclidean, metric, and Wasserstein}}\}} gradient flows: an overview. Bulletin of Mathematical Sciences, 7:87–154, 2017.
  72. Alexander Shapiro. On concepts of directional differentiability. Journal of Optimization Theory and Applications, 66:477–487, 1990.
  73. An optimal transport approach to causal inference. arXiv preprint arXiv:2108.05858, 2021.
  74. An exact Cholesky decomposition and the generalized inverse of the variance–covariance matrix of the multinomial distribution, with applications. Journal of the Royal Statistical Society: Series B (Methodological), 54(1):211–219, 1992.
  75. Aad W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.
  76. Aad W. van der Vaart and Jon A Wellner. Weak convergence and Empirical Processes: with Applications to Statistics. Springer, 1996.
  77. Cédric Villani. Optimal Transport: Old and New. Springer, 2008.
  78. Larry Wasserman. All of Nonparametric Statistics. Springer Science & Business Media, 2006.
  79. David F. Watson. Computing the n𝑛nitalic_n-dimensional Delaunay tessellation with application to Voronoi polytopes. The computer journal, 24(2):167–172, 1981.
  80. Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019.
  81. Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, 2003.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com