Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parabolic recursions for Kazhdan-Lusztig polynomials and the hypercube decomposition (2303.09251v1)

Published 16 Mar 2023 in math.RT and math.CO

Abstract: We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of $S_n$, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of $q$-derived Kazhdan-Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski-Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.

Summary

We haven't generated a summary for this paper yet.