Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic results for compound sums in separable Banach spaces (2303.08788v3)

Published 15 Mar 2023 in math.PR

Abstract: We prove large and moderate deviation results for sequences of compound sums, where the summands are i.i.d. random variables taking values in a separable Banach space. We establish that the results hold by proving that we are dealing with exponentially tight sequences. We present two moderate deviation results: in the first one the summands are centered, in the second one the compound sums are centered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Compact covariance operators. Proc. Amer. Math. Soc., 83(3):590–593, 1981.
  2. L. Beghin and C. Macci. Large deviations for fractional Poisson processes. Statist. Probab. Lett., 83(4):1193–1202, 2013.
  3. L. Beghin and C. Macci. Asymptotic results for a multivariate version of the alternative fractional Poisson process. Statist. Probab. Lett., 129:260–268, 2017.
  4. L. Beghin and E. Orsingher. Fractional Poisson processes and related planar random motions. Electron. J. Probab., 14(61):1790–1827, 2009.
  5. P. Billingsley. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney, 1968.
  6. P. Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, third edition, 1995. A Wiley-Interscience Publication.
  7. A. de Acosta. On large deviations of sums of independent random vectors. In Probability in Banach spaces, V (Medford, Mass., 1984), volume 1153 of Lecture Notes in Math., pages 1–14. Springer, Berlin, 1985.
  8. A. de Acosta. Upper bounds for large deviations of dependent random vectors. Z. Wahrsch. Verw. Gebiete, 69(4):551–565, 1985.
  9. A. de Acosta. Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Amer. Math. Soc., 329(1):357–375, 1992.
  10. A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.
  11. H. Döring and P. Eichelsbacher. Moderate deviations via cumulants. J. Theoret. Probab., 26(2):360–385, 2013.
  12. P. Eichelsbacher and M. Löwe. Lindeberg’s method for moderate deviations and random summation. J. Theoret. Probab., 32(2):872–897, 2019.
  13. Asymptotic results for runs and empirical cumulative entropies. J. Statist. Plann. Inference, 157/158:77–89, 2015.
  14. P. W. Glynn and W. Whitt. Large deviations behavior of counting processes and their inverses. Queueing Systems Theory Appl., 17(1-2):107–128, 1994.
  15. Random summation. CRC Press, Boca Raton, FL, 1996. Limit theorems and applications.
  16. Mittag-Leffler functions, related topics and applications. Springer Monographs in Mathematics. Springer, Heidelberg, 2014.
  17. J. Hoffmann-Jø​​ rgensen and G. Pisier. The law of large numbers and the central limit theorem in Banach spaces. Ann. Probability, 4(4):587–599, 1976.
  18. J. Lynch and J. Sethuraman. Large deviations for processes with independent increments. Ann. Probab., 15(2):610–627, 1987.
  19. H. Mita. Probabilities of large deviations for sums of random number of i.i.d. random variables and its application to a compound Poisson process. Tokyo J. Math., 20(2):353–364, 1997.
  20. L. Narici and E. Beckenstein. Topological vector spaces, volume 296 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2011.
  21. J. Prochno. The large and moderate deviations approach in geometric functional analysis. Preprint arXiv:2403.03940, 2024.
  22. R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.
  23. Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1999.
  24. E. Schechter. Handbook of analysis and its foundations. Academic Press, Inc., San Diego, CA, 1997.
  25. S. R. S. Varadhan. Large deviations and applications. In École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages 1–49. Springer, Berlin, 1988.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com