Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distinguishing Cause from Effect on Categorical Data: The Uniform Channel Model (2303.08572v1)

Published 14 Mar 2023 in cs.LG, cs.CL, cs.IT, and math.IT

Abstract: Distinguishing cause from effect using observations of a pair of random variables is a core problem in causal discovery. Most approaches proposed for this task, namely additive noise models (ANM), are only adequate for quantitative data. We propose a criterion to address the cause-effect problem with categorical variables (living in sets with no meaningful order), inspired by seeing a conditional probability mass function (pmf) as a discrete memoryless channel. We select as the most likely causal direction the one in which the conditional pmf is closer to a uniform channel (UC). The rationale is that, in a UC, as in an ANM, the conditional entropy (of the effect given the cause) is independent of the cause distribution, in agreement with the principle of independence of cause and mechanism. Our approach, which we call the uniform channel model (UCM), thus extends the ANM rationale to categorical variables. To assess how close a conditional pmf (estimated from data) is to a UC, we use statistical testing, supported by a closed-form estimate of a UC channel. On the theoretical front, we prove identifiability of the UCM and show its equivalence with a structural causal model with a low-cardinality exogenous variable. Finally, the proposed method compares favorably with recent state-of-the-art alternatives in experiments on synthetic, benchmark, and real data.

Summary

We haven't generated a summary for this paper yet.