Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving information retrieval through correspondence analysis instead of latent semantic analysis (2303.08030v1)

Published 14 Mar 2023 in cs.IR

Abstract: Both latent semantic analysis (LSA) and correspondence analysis (CA) are dimensionality reduction techniques that use singular value decomposition (SVD) for information retrieval. Theoretically, the results of LSA display both the association between documents and terms, and marginal effects; in comparison, CA only focuses on the associations between documents and terms. Marginal effects are usually not relevant for information retrieval, and therefore, from a theoretical perspective CA is more suitable for information retrieval. In this paper, we empirically compare LSA and CA. The elements of the raw document-term matrix are weighted, and the weighting exponent of singular values is adjusted to improve the performance of LSA. We explore whether these two weightings also improve the performance of CA. In addition, we compare the optimal singular value weighting exponents for LSA and CA to identify what the initial dimensions in LSA correspond to. The results for four empirical datasets show that CA always performs better than LSA. Weighting the elements of the raw data matrix can improve CA; however, it is data dependent and the improvement is small. Adjusting the singular value weighting exponent usually improves the performance of CA; however, the extent of the improved performance depends on the dataset and number of dimensions. In general, CA needs a larger singular value weighting exponent than LSA to obtain the optimal performance. This indicates that CA emphasizes initial dimensions more than LSA, and thus, margins play an important role in the initial dimensions in LSA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qianqian Qi (6 papers)
  2. David J. Hessen (4 papers)
  3. Peter G. M. van der Heijden (13 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.