Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning for Precision Motion of an Interventional X-ray System: Add-on Physics-Guided Neural Network Feedforward Control (2303.07994v2)

Published 14 Mar 2023 in eess.SY and cs.SY

Abstract: Tracking performance of physical-model-based feedforward control for interventional X-ray systems is limited by hard-to-model parasitic nonlinear dynamics, such as cable forces and nonlinear friction. In this paper, these nonlinear dynamics are compensated using a physics-guided neural network (PGNN), consisting of a physical model, embedding prior knowledge of the dynamics, in parallel with a neural network to learn hard-to-model dynamics. To ensure that the neural network learns only unmodelled effects, the neural network output in the subspace spanned by the physical model is regularized via an orthogonal projection-based approach, resulting in complementary physical model and neural network contributions. The PGNN feedforward controller reduces the tracking error of an interventional X-ray system by a factor of 5 compared to an optimally tuned physical model, successfully compensating the unmodeled parasitic dynamics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.