Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Bayes inference in sparse high-dimensional generalized linear models (2303.07854v2)

Published 14 Mar 2023 in math.ST, stat.ME, and stat.TH

Abstract: High-dimensional linear models have been widely studied, but the developments in high-dimensional generalized linear models, or GLMs, have been slower. In this paper, we propose an empirical or data-driven prior leading to an empirical Bayes posterior distribution which can be used for estimation of and inference on the coefficient vector in a high-dimensional GLM, as well as for variable selection. We prove that our proposed posterior concentrates around the true/sparse coefficient vector at the optimal rate, provide conditions under which the posterior can achieve variable selection consistency, and prove a Bernstein--von Mises theorem that implies asymptotically valid uncertainty quantification. Computation of the proposed empirical Bayes posterior is simple and efficient, and is shown to perform well in simulations compared to existing Bayesian and non-Bayesian methods in terms of estimation and variable selection.

Summary

We haven't generated a summary for this paper yet.