Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GANN: Graph Alignment Neural Network for Semi-Supervised Learning (2303.07778v1)

Published 14 Mar 2023 in cs.LG and cs.AI

Abstract: Graph neural networks (GNNs) have been widely investigated in the field of semi-supervised graph machine learning. Most methods fail to exploit adequate graph information when labeled data is limited, leading to the problem of oversmoothing. To overcome this issue, we propose the Graph Alignment Neural Network (GANN), a simple and effective graph neural architecture. A unique learning algorithm with three alignment rules is proposed to thoroughly explore hidden information for insufficient labels. Firstly, to better investigate attribute specifics, we suggest the feature alignment rule to align the inner product of both the attribute and embedding matrices. Secondly, to properly utilize the higher-order neighbor information, we propose the cluster center alignment rule, which involves aligning the inner product of the cluster center matrix with the unit matrix. Finally, to get reliable prediction results with few labels, we establish the minimum entropy alignment rule by lining up the prediction probability matrix with its sharpened result. Extensive studies on graph benchmark datasets demonstrate that GANN can achieve considerable benefits in semi-supervised node classification and outperform state-of-the-art competitors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.