Emergent Mind

Abstract

Creating learning models that can exhibit sophisticated reasoning skills is one of the greatest challenges in deep learning research, and mathematics is rapidly becoming one of the target domains for assessing scientific progress in this direction. In the past few years there has been an explosion of neural network architectures, data sets, and benchmarks specifically designed to tackle mathematical problems, reporting notable success in disparate fields such as automated theorem proving, numerical integration, and discovery of new conjectures or matrix multiplication algorithms. However, despite these impressive achievements it is still unclear whether deep learning models possess an elementary understanding of quantities and symbolic numbers. In this survey we critically examine the recent literature, concluding that even state-of-the-art architectures often fall short when probed with relatively simple tasks designed to test basic numerical and arithmetic knowledge.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.