Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Phase Space in General Gauge Theories (2303.06786v2)

Published 13 Mar 2023 in hep-th

Abstract: In a paper, it was shown that in diffeomorphism-invariant theories, Noether charges associated with a given codimension-2 surface become integrable if one introduces an extended phase space. In this paper we extend the notion of extended phase space to all gauge theories with arbitrary combinations of internal and spacetime local symmetries. We formulate this in terms of a corresponding Atiyah Lie algebroid, a geometric object derived from a principal bundle which features internal symmetries and diffeomorphisms on an equal footing. In this language, gauge transformations are understood as morphisms between Atiyah Lie algebroids that preserve the geometric structures encoded therein. The extended configuration space of a gauge theory can subsequently be understood as the space of pairs $(\varphi, \Phi)$, where $\varphi$ is a Lie algebroid morphism and $\Phi$ is a field configuration in the non-extended sense. Starting from this data, we outline a very powerful, manifestly geometric approach to the extended phase space. Using this approach, we find that the action of the group of gauge transformations and diffeomorphisms on the symplectic geometry of any covariant theory is integrable. We motivate our construction by carefully examining the need for extended phase space in Chern-Simons gauge theories and display its usefulness by re-computing the charge algebra. We also describe the implementation of the configuration algebroid in Einstein-Yang-Mills theories.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com