Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Need for Speed: Fast Correspondence-Free Lidar-Inertial Odometry Using Doppler Velocity (2303.06511v2)

Published 11 Mar 2023 in cs.RO

Abstract: In this paper, we present a fast, lightweight odometry method that uses the Doppler velocity measurements from a Frequency-Modulated Continuous-Wave (FMCW) lidar without data association. FMCW lidar is a recently emerging technology that enables per-return relative radial velocity measurements via the Doppler effect. Since the Doppler measurement model is linear with respect to the 6-degrees-of-freedom (DOF) vehicle velocity, we can formulate a linear continuous-time estimation problem for the velocity and numerically integrate for the 6-DOF pose estimate afterward. The caveat is that angular velocity is not observable with a single FMCW lidar. We address this limitation by also incorporating the angular velocity measurements from a gyroscope. This results in an extremely efficient odometry method that processes lidar frames at an average wall-clock time of 5.64ms on a single thread, well below the 10Hz operating rate of the lidar we tested. We show experimental results on real-world driving sequences and compare against state-of-the-art Iterative Closest Point (ICP)-based odometry methods, presenting a compelling trade-off between accuracy and computation. We also present an algebraic observability study, where we demonstrate in theory that the Doppler measurements from multiple FMCW lidars are capable of observing all 6 degrees of freedom (translational and angular velocity).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.
  2. B. Hexsel, H. Vhavle, and Y. Chen, “DICP: Doppler Iterative Closest Point Algorithm,” in RSS, 2022.
  3. Y. Wu, D. J. Yoon, K. Burnett, S. Kammel, Y. Chen, H. Vhavle, and T. D. Barfoot, “Picking up speed: Continuous-time lidar-only odometry using doppler velocity measurements,” IEEE RAL, vol. 8, no. 1, pp. 264–271, 2023.
  4. J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” vol. 41, no. 2, pp. 401–416, 2017.
  5. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.
  6. J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser range data in urban environments,” in RSS, 2018.
  7. H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry and mapping,” in ICRA, 2019, pp. 3144–3150.
  8. I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Registration If Done the Right Way,” IEEE RAL, vol. 8, no. 2, pp. 1029–1036, 2023.
  9. P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch estimation using temporal basis functions,” in ICRA, 2012.
  10. S. Anderson and T. D. Barfoot, “Towards relative continuous-time slam,” in ICRA, 2013, pp. 1033–1040.
  11. T. Barfoot, C. Hay Tong, and S. Sarkka, “Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression,” in RSS, 2014.
  12. J. N. Wong, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “A Data-Driven Motion Prior for Continuous-Time Trajectory Estimation on SE(3),” vol. 5, no. 2, pp. 1429–1436, 2020.
  13. P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. G. Goulette, “Ct-icp: Real-time elastic lidar odometry with loop closure,” in ICRA, 2022, pp. 5580–5586.
  14. Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile lidar slam via multi-metric linear least square,” in ICRA, 2021.
  15. M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee, C. Kanellakis, L. Carlone, C. Guaragnella, and A.-a. Agha-Mohammadi, “Locus: A multi-sensor lidar-centric solution for high-precision odometry and 3d mapping in real-time,” IEEE RAL, pp. 421–428, 2020.
  16. A. Tagliabue, J. Tordesillas, X. Cai, A. Santamaria-Navarro, J. P. How, L. Carlone, and A.-a. Agha-mohammadi, “Lion: Lidar-inertial observability-aware navigator for vision-denied environments,” in Experimental Robotics: The 17th International Symposium.   Springer, 2021, pp. 380–390.
  17. S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super odometry: Imu-centric lidar-visual-inertial estimator for challenging environments,” IROS, pp. 8729–8736, 2021.
  18. K. Chen, R. Nemiroff, and B. T. Lopez, “Direct lidar-inertial odometry: Lightweight lio with continuous-time motion correction,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3983–3989.
  19. C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “Lins: A lidar-inertial state estimator for robust and efficient navigation,” ICRA, pp. 8899–8905, 5 2020.
  20. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
  21. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in IROS, 2020, pp. 5135–5142.
  22. C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time visual–inertial odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, 2016.
  23. D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann, and K. Dietmayer, “Instantaneous ego-motion estimation using doppler radar,” in International IEEE Conference on Intelligent Transportation Systems, 2013, pp. 869–874.
  24. ——, “Instantaneous ego-motion estimation using multiple doppler radars,” in ICRA, 2014, pp. 1592–1597.
  25. A. Kramer, C. Stahoviak, A. Santamaria-Navarro, A.-A. Agha-Mohammadi, and C. Heckman, “Radar-inertial ego-velocity estimation for visually degraded environments,” in ICRA, 2020, pp. 5739–5746.
  26. Y. S. Park, Y.-S. Shin, J. Kim, and A. Kim, “3d ego-motion estimation using low-cost mmwave radars via radar velocity factor for pose-graph slam,” IEEE RAL, vol. 6, no. 4, pp. 7691–7698, 2021.
  27. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
  28. K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian, W.-K. Tseng, A. Lambert, K. Y. Leung, A. P. Schoellig, and T. D. Barfoot, “Boreas: A multi-season autonomous driving dataset,” The International Journal of Robotics Research, vol. 42, no. 1-2, pp. 33–42, 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.