Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational formulations of ODE-Net as a mean-field optimal control problem and existence results (2303.05924v4)

Published 9 Mar 2023 in math.AP, cs.LG, and math.OC

Abstract: This paper presents a mathematical analysis of ODE-Net, a continuum model of deep neural networks (DNNs). In recent years, Machine Learning researchers have introduced ideas of replacing the deep structure of DNNs with ODEs as a continuum limit. These studies regard the "learning" of ODE-Net as the minimization of a "loss" constrained by a parametric ODE. Although the existence of a minimizer for this minimization problem needs to be assumed, only a few studies have investigated its existence analytically in detail. In the present paper, the existence of a minimizer is discussed based on a formulation of ODE-Net as a measure-theoretic mean-field optimal control problem. The existence result is proved when a neural network, which describes a vector field of ODE-Net, is linear with respect to learnable parameters. The proof employs the measure-theoretic formulation combined with the direct method of Calculus of Variations. Secondly, an idealized minimization problem is proposed to remove the above linearity assumption. Such a problem is inspired by a kinetic regularization associated with the Benamou--Brenier formula and universal approximation theorems for neural networks. The proofs of these existence results use variational methods, differential equations, and mean-field optimal control theory. They will stand for a new analytic way to investigate the learning process of deep neural networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.