Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Value of Stochastic Side Information in Online Learning (2303.05914v1)

Published 9 Mar 2023 in cs.LG and eess.SP

Abstract: We study the effectiveness of stochastic side information in deterministic online learning scenarios. We propose a forecaster to predict a deterministic sequence where its performance is evaluated against an expert class. We assume that certain stochastic side information is available to the forecaster but not the experts. We define the minimax expected regret for evaluating the forecasters performance, for which we obtain both upper and lower bounds. Consequently, our results characterize the improvement in the regret due to the stochastic side information. Compared with the classical online learning problem with regret scales with O(\sqrt(n)), the regret can be negative when the stochastic side information is more powerful than the experts. To illustrate, we apply the proposed bounds to two concrete examples of different types of side information.

Summary

We haven't generated a summary for this paper yet.