Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution of Andrews' Singular Overpartitions $\overline{C}_{p,1}(n)$ (2303.05314v1)

Published 9 Mar 2023 in math.NT and math.CO

Abstract: Andrews introduced the partition function $\overline{C}{k, i}(n)$, called singular overpartition, which counts the number of overpartitions of $n$ in which no part is divisible by $k$ and only parts $\equiv \pm i\pmod{k}$ may be overlined. We study the parity and distribution results for $\overline{C}{k,i}(n),$ where $k>3$ and $1\leq i \leq \left\lfloor\frac{k}{2}\right\rfloor$. More particularly, we prove that for each integer $\ell\geq 2$ depending on $k$ and $i$, the interval $\left[\ell, \frac{\ell(3\ell+1)}{2}\right]$ $\Big($resp.\ $\left[2\ell-1, \frac{\ell(3\ell-1)}{2}\right] \Big)$ contains an integer $n$ such that $\overline{C}{k,i}(n)$ is even (resp.\ odd). Finally we study the distribution for $\overline{C}{p,1}(n)$ where $p\geq 5$ be a prime number.

Summary

We haven't generated a summary for this paper yet.