Closest lattice point decoding for multimode Gottesman-Kitaev-Preskill codes (2303.04702v3)
Abstract: Quantum error correction (QEC) plays an essential role in fault-tolerantly realizing quantum algorithms of practical interest. Among different approaches to QEC, encoding logical quantum information in harmonic oscillator modes has been shown to be promising and hardware efficient. In this work, we study multimode Gottesman-Kitaev-Preskill (GKP) codes, encoding a qubit in many oscillators, through a lattice perspective. In particular, we implement a closest point decoding strategy for correcting random Gaussian shift errors. For decoding a generic multimode GKP code, we first identify its corresponding lattice followed by finding the closest lattice point in its symplectic dual lattice to a candidate shift error compatible with the error syndrome. We use this method to characterize the error correction capabilities of several known multimode GKP codes, including their code distances and fidelities. We also perform numerical optimization of multimode GKP codes up to ten modes and find three instances (with three, seven and nine modes) with better code distances and fidelities compared to the known GKP codes with the same number of modes. While exact closest point decoding incurs exponential time cost in the number of modes for general unstructured GKP codes, we give several examples of structured GKP codes (i.e., of the repetition-rectangular GKP code types) where the closest point decoding can be performed exactly in linear time. For the surface-GKP code, we show that the closest point decoding can be performed exactly in polynomial time with the help of a minimum-weight-perfect-matching algorithm (MWPM). We show that this MWPM closest point decoder improves both the fidelity and the noise threshold of the surface-GKP code to 0.602 compared to the previously studied MWPM decoder assisted by log-likelihood analog information which yields a noise threshold of 0.599.
- M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).
- J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
- D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, in Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp. 13–58.
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- A. Steane, Multiple-particle interference and quantum error correction, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996a).
- A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review A 54, 1098 (1996).
- A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996b).
- D. Gottesman, Class of quantum error-correcting codes saturating the quantum hamming bound, Physical Review A 54, 1862 (1996).
- D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- A. Joshi, K. Noh, and Y. Y. Gao, Quantum information processing with bosonic qubits in circuit qed, Quantum Science and Technology 6, 033001 (2021).
- K. Noh, Quantum Computation and Communication in Bosonic Systems, Ph.D. thesis, Yale University (2020).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999).
- H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65, 042305 (2002).
- J. Guillaud and M. Mirrahimi, Repetition cat qubits for fault-tolerant quantum computation, Phys. Rev. X 9, 041053 (2019).
- J. Guillaud and M. Mirrahimi, Error rates and resource overheads of repetition cat qubits, Physical Review A 103, 042413 (2021).
- P. Aliferis and J. Preskill, Fault-tolerant quantum computation against biased noise, Phys. Rev. A 78, 052331 (2008).
- P. Webster, S. D. Bartlett, and D. Poulin, Reducing the overhead for quantum computation when noise is biased, Physical Review A 92, 062309 (2015).
- D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh error threshold for surface codes with biased noise, Phys. Rev. Lett. 120, 050505 (2018).
- D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
- A. L. Grimsmo and S. Puri, Quantum error correction with the gottesman-kitaev-preskill code, PRX Quantum 2, 020101 (2021).
- K. Noh, C. Chamberland, and F. G. Brandão, Low-overhead fault-tolerant quantum error correction with the surface-gkp code, PRX Quantum 3, 010315 (2022).
- K. Noh and C. Chamberland, Fault-tolerant bosonic quantum error correction with the surface–gottesman-kitaev-preskill code, Phys. Rev. A 101, 012316 (2020).
- K. Noh, S. M. Girvin, and L. Jiang, Encoding an oscillator into many oscillators, Phys. Rev. Lett. 125, 080503 (2020).
- A. G. Fowler, Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o(1)𝑜1o(1)italic_o ( 1 ) parallel time, arXiv preprint arXiv:1307.1740 (2013).
- O. Higgott and C. Gidney, Sparse blossom: correcting a million errors per core second with minimum-weight matching, arXiv preprint arXiv:2303.15933 (2023).
- K. Fukui, A. Tomita, and A. Okamoto, Analog quantum error correction with encoding a qubit into an oscillator, Phys. Rev. Lett. 119, 180507 (2017).
- B. M. Terhal, J. Conrad, and C. Vuillot, Towards scalable bosonic quantum error correction, Quantum Science and Technology 5, 043001 (2020).
- K. Fukui, A. Tomita, and A. Okamoto, Tracking quantum error correction, Phys. Rev. A 98, 022326 (2018b).
- K. Fukui, High-threshold fault-tolerant quantum computation with the gkp qubit and realistically noisy devices, arXiv preprint arXiv:1906.09767 (2019).
- J. Harrington and J. Preskill, Achievable rates for the gaussian quantum channel, Phys. Rev. A 64, 062301 (2001).
- J. W. Harrington, Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes (California Institute of Technology, 2004).
- L. Hänggli, M. Heinze, and R. König, Enhanced noise resilience of the surface–gottesman-kitaev-preskill code via designed bias, Phys. Rev. A 102, 052408 (2020).
- L. Hänggli and R. König, Oscillator-to-oscillator codes do not have a threshold, IEEE Transactions on Information Theory 68, 1068 (2021).
- J. Conrad, J. Eisert, and F. Arzani, Gottesman-kitaev-preskill codes: A lattice perspective, Quantum 6, 648 (2022).
- B. Royer, S. Singh, and S. Girvin, Encoding qubits in multimode grid states, PRX Quantum 3, 010335 (2022).
- J. Conrad, J. Eisert, and J.-P. Seifert, Good gottesman-kitaev-preskill codes from the ntru cryptosystem, arXiv preprint arXiv:2303.02432 (2023).
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Vol. 290 (Springer Science & Business Media, 2013).
- P. van Emde-Boas, Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Report. Department of Mathematics. University of Amsterdam (Department, Univ., 1981).
- D. Micciancio, The hardness of the closest vector problem with preprocessing, IEEE Transactions on Information Theory 47, 1212 (2001a).
- D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, SIAM journal on Computing 30, 2008 (2001b).
- J. Conway and N. Sloane, Fast quantizing and decoding and algorithms for lattice quantizers and codes, IEEE Transactions on Information Theory 28, 227 (1982).
- J. Conway and N. Sloane, Soft decoding techniques for codes and lattices, including the golay code and the leech lattice, IEEE Transactions on Information Theory 32, 41 (1986).
- Y. Be’ery, B. Shahar, and J. Snyders, Fast decoding of the leech lattice, IEEE journal on selected areas in communications 7, 959 (1989).
- A. van Poppelen, Cryptographic decoding of the Leech lattice, Master’s thesis (2016).
- LatticeAlgorithms.jl: Julia package for solving lattice problems, https://github.com/amazon-science/LatticeAlgorithms.jl.
- S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms for maximum likelihood decoding in the surface code, Physical Review A 90, 032326 (2014).
- E. Agrell and T. Eriksson, Optimization of lattices for quantization, IEEE Transactions on Information Theory 44, 1814 (1998).
- J. H. Conway and N. J. Sloane, On the voronoi regions of certain lattices, SIAM Journal on Algebraic Discrete Methods 5, 294 (1984).
- O. Damen, A. Chkeif, and J.-C. Belfiore, Lattice code decoder for space-time codes, IEEE Communications letters 4, 161 (2000).
- D. Micciancio and O. Regev, Lattice-based cryptography, in Post-quantum cryptography (Springer, 2009) pp. 147–191.
- C.-P. Schnorr and H. H. Hörner, Attacking the chor-rivest cryptosystem by improved lattice reduction, in International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 1995) pp. 1–12.
- D. Micciancio and P. Voulgaris, A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations, in Proceedings of the forty-second ACM symposium on Theory of computing (2010) pp. 351–358.
- D. Dadush and N. Bonifas, Short paths on the voronoi graph and closest vector problem with preprocessing, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SIAM, 2014) pp. 295–314.
- R. Kannan, Improved algorithms for integer programming and related lattice problems, in Proceedings of the fifteenth annual ACM symposium on Theory of computing (1983) pp. 193–206.
- R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of operations research 12, 415 (1987).
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Mathematics of computation 44, 463 (1985).
- C.-P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems, Mathematical programming 66, 181 (1994).
- M. P. Stafford and N. C. Menicucci, Biased gottesman-kitaev-preskill repetition code, arXiv preprint arXiv:2212.11397 (2022).
- D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73, 012340 (2006).
- S. L. Braunstein, Squeezing as an irreducible resource, Physical Review A 71, 055801 (2005).
- W. Fulton and J. Harris, Representation theory: a first course, Vol. 129 (Springer Science & Business Media, 2013).
- A. S. Holevo and R. F. Werner, Evaluating capacities of bosonic gaussian channels, Phys. Rev. A 63, 032312 (2001).
- B. Royer, S. Singh, and S. M. Girvin, Stabilization of finite-energy gottesman-kitaev-preskill states, Phys. Rev. Lett. 125, 260509 (2020).
- K. Sahay and B. J. Brown, Decoder for the triangular color code by matching on a möbius strip, PRX Quantum 3, 010310 (2022).