Optimal Solutions of Well-Posed Linear Systems via Low-Precision Right-Preconditioned GMRES with Forward and Backward Stabilization (2303.04251v1)
Abstract: Linear systems in applications are typically well-posed, and yet the coefficient matrices may be nearly singular in that the condition number $\kappa(\boldsymbol{A})$ may be close to $1/\varepsilon_{w}$, where $\varepsilon_{w}$ denotes the unit roundoff of the working precision. It is well known that iterative refinement (IR) can make the forward error independent of $\kappa(\boldsymbol{A})$ if $\kappa(\boldsymbol{A})$ is sufficiently smaller than $1/\varepsilon_{w}$ and the residual is computed in higher precision. We propose a new iterative method, called Forward-and-Backward Stabilized Minimal Residual or FBSMR, by conceptually hybridizing right-preconditioned GMRES (RP-GMRES) with quasi-minimization. We develop FBSMR based on a new theoretical framework of essential-forward-and-backward stability (EFBS), which extends the backward error analysis to consider the intrinsic condition number of a well-posed problem. We stabilize the forward and backward errors in RP-GMRES to achieve EFBS by evaluating a small portion of the algorithm in higher precision while evaluating the preconditioner in lower precision. FBSMR can achieve optimal accuracy in terms of both forward and backward errors for well-posed problems with unpolluted matrices, independently of $\kappa(\boldsymbol{A})$. With low-precision preconditioning, FBSMR can reduce the computational, memory, and energy requirements over direct methods with or without IR. FBSMR can also leverage parallelization-friendly classical Gram-Schmidt in Arnoldi iterations without compromising EFBS. We demonstrate the effectiveness of FBSMR using both random and realistic linear systems.