Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Randomization for Robust, Affordable and Effective Closed-loop Control of Soft Robots (2303.04136v2)

Published 7 Mar 2023 in cs.RO and cs.LG

Abstract: Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability. However, the potentially infinite number of Degrees of Freedom makes their modeling a daunting task, and in many cases only an approximated description is available. This challenge makes reinforcement learning (RL) based approaches inefficient when deployed on a realistic scenario, due to the large domain gap between models and the real platform. In this work, we demonstrate, for the first time, how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots with: i) robustness w.r.t. unknown dynamics parameters; ii) reduced training times by exploiting drastically simpler dynamic models for learning; iii) better environment exploration, which can lead to exploitation of environmental constraints for optimal performance. Moreover, we introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects. We provide an extensive evaluation in simulation on four different tasks and two soft robot designs, opening interesting perspectives for future research on Reinforcement Learning for closed-loop soft robot control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired evolution in robotics,” Trends in biotechnology, vol. 31, no. 5, pp. 287–294, 2013.
  2. M. Runciman, A. Darzi, and G. P. Mylonas, “Soft robotics in minimally invasive surgery,” Soft robotics, vol. 6, no. 4, pp. 423–443, 2019.
  3. S. Aracri, F. Giorgio-Serchi, G. Suaria, M. E. Sayed, M. P. Nemitz, S. Mahon, and A. A. Stokes, “Soft robots for ocean exploration and offshore operations: A perspective,” Soft Robotics, vol. 8, no. 6, pp. 625–639, 2021.
  4. M. Dubied, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann, “Sim-to-Real for Soft Robots Using Differentiable FEM: Recipes for Meshing, Damping, and Actuation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5015–5022, 2022.
  5. F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, “Dynamic model of a multibending soft robot arm driven by cables,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1109–1122, 2014.
  6. C. Della Santina, C. Duriez, and D. Rus, “Model based control of soft robots: A survey of the state of the art and open challenges,” arXiv preprint arXiv:2110.01358, 2021.
  7. D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku, D. Kim, J. Kwon, H. Lee, et al., “Review of machine learning methods in soft robotics,” Plos one, vol. 16, no. 2, p. e0246102, 2021.
  8. S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren, “Deep Reinforcement Learning for Soft, Flexible Robots: Brief Review with Impending Challenges,” Robotics, vol. 8, no. 1, p. 4, Mar. 2019.
  9. T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 124–134, 2019.
  10. A. Centurelli, L. Arleo, A. Rizzo, S. Tolu, C. Laschi, and E. Falotico, “Closed-loop dynamic control of a soft manipulator using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4741–4748, 2022.
  11. C. Schaff, A. Sedal, and M. R. Walter, “Soft robots learn to crawl: Jointly optimizing design and control with sim-to-real transfer,” arXiv preprint arXiv:2202.04575, 2022.
  12. Y. Li, X. Wang, and K.-W. Kwok, “Towards Adaptive Continuous Control of Soft Robotic Manipulator using Reinforcement Learning,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022, pp. 7074–7081, iSSN: 2153-0866.
  13. E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry, M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, J. Dequidt, et al., “Software toolkit for modeling, simulation, and control of soft robots,” Advanced Robotics, vol. 31, no. 22, pp. 1208–1224, 2017.
  14. N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and M. Gazzola, “Elastica: A compliant mechanics environment for soft robotic control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3389–3396, 2021.
  15. X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic control with dynamics randomization,” in IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 3803–3810.
  16. J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.
  17. P. Schegg, E. Ménager, E. Khairallah, D. Marchal, J. Dequidt, P. Preux, and C. Duriez, “Sofagym: An open platform for reinforcement learning based on soft robot simulations,” Soft Robotics, 2022.
  18. W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: a survey,” in 2020 IEEE symposium series on computational intelligence (SSCI).   IEEE, 2020, pp. 737–744.
  19. Y.-Y. Tsai, H. Xu, Z. Ding, C. Zhang, E. Johns, and B. Huang, “DROID: Minimizing the Reality Gap Using Single-Shot Human Demonstration,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3168–3175, 2021.
  20. F. Ramos, R. C. Possas, and D. Fox, “Bayessim: adaptive domain randomization via probabilistic inference for robotics simulators,” arXiv preprint arXiv:1906.01728, 2019.
  21. G. Tiboni, K. Arndt, and V. Kyrki, “Dropo: Sim-to-real transfer with offline domain randomization,” Robotics and Autonomous Systems, p. 104432, 2023.
  22. O. Goury and C. Duriez, “Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1565–1576, Dec. 2018.
  23. P. Schegg and C. Duriez, “Review on generic methods for mechanical modeling, simulation and control of soft robots,” Plos one, vol. 17, no. 1, p. e0251059, 2022.
  24. Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable physical simulator for soft robotics,” in International Conference on Robotics and Automation (ICRA), 2019, pp. 6265–6271.
  25. Y. S. Narang, J. J. Vlassak, and R. D. Howe, “Mechanically versatile soft machines through laminar jamming,” Advanced Functional Materials, vol. 28, no. 17, p. 1707136, 2018.
  26. S. Grazioso, G. Di Gironimo, and B. Siciliano, “A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation,” Soft robotics, vol. 6, Nov. 2018.
  27. A. T. Mathew, I. M. B. Hmida, C. Armanini, F. Boyer, and F. Renda, “Sorosim: A matlab toolbox for hybrid rigid-soft robots based on the geometric variable-strain approach,” IEEE Robotics & Automation Magazine, pp. 2–18, 2022.
  28. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.
  29. S. James, A. J. Davison, and E. Johns, “Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task,” in Conference on Robot Learning.   PMLR, 2017, pp. 334–343.
  30. F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real image,” arXiv preprint arXiv:1611.04201, 2016.
  31. F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters, “Robot learning from randomized simulations: A review,” Frontiers in Robotics and AI, p. 31, 2022.
  32. Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen, “How to pick the domain randomization parameters for sim-to-real transfer of reinforcement learning policies?” arXiv preprint arXiv:1903.11774, 2019.
  33. Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with real world experience,” in International Conference on Robotics and Automation (ICRA), 2019, pp. 8973–8979.
  34. G. Tiboni, K. Arndt, G. Averta, V. Kyrki, and T. Tommasi, “Online vs. offline adaptive domain randomization benchmark,” in Human-Friendly Robotics 2022.   Springer International Publishing, 2023, pp. 158–173.
  35. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  36. N. Hansen, “The cma evolution strategy: a comparing review,” Towards a new evolutionary computation: Advances in the estimation of distribution algorithms, pp. 75–102, 2006.
Citations (2)

Summary

We haven't generated a summary for this paper yet.