Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multiplicative Value Function for Safe and Efficient Reinforcement Learning (2303.04118v1)

Published 7 Mar 2023 in cs.RO and cs.LG

Abstract: An emerging field of sequential decision problems is safe Reinforcement Learning (RL), where the objective is to maximize the reward while obeying safety constraints. Being able to handle constraints is essential for deploying RL agents in real-world environments, where constraint violations can harm the agent and the environment. To this end, we propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic. The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns. By splitting responsibilities, we facilitate the learning task leading to increased sample efficiency. We integrate our approach into two popular RL algorithms, Proximal Policy Optimization and Soft Actor-Critic, and evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations. Finally, we make the zero-shot sim-to-real transfer where a differential drive robot has to navigate through a cluttered room. Our code can be found at https://github.com/nikeke19/Safe-Mult-RL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Nick Bührer (1 paper)
  2. Zhejun Zhang (11 papers)
  3. Alexander Liniger (42 papers)
  4. Fisher Yu (104 papers)
  5. Luc Van Gool (570 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.