Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parareal with a physics-informed neural network as coarse propagator (2303.03848v2)

Published 7 Mar 2023 in math.NA, cs.CE, cs.DC, and cs.NA

Abstract: Parallel-in-time algorithms provide an additional layer of concurrency for the numerical integration of models based on time-dependent differential equations. Methods like Parareal, which parallelize across multiple time steps, rely on a computationally cheap and coarse integrator to propagate information forward in time, while a parallelizable expensive fine propagator provides accuracy. Typically, the coarse method is a numerical integrator using lower resolution, reduced order or a simplified model. Our paper proposes to use a physics-informed neural network (PINN) instead. We demonstrate for the Black-Scholes equation, a partial differential equation from computational finance, that Parareal with a PINN coarse propagator provides better speedup than a numerical coarse propagator. Training and evaluating a neural network are both tasks whose computing patterns are well suited for GPUs. By contrast, mesh-based algorithms with their low computational intensity struggle to perform well. We show that moving the coarse propagator PINN to a GPU while running the numerical fine propagator on the CPU further improves Parareal's single-node performance. This suggests that integrating machine learning techniques into parallel-in-time integration methods and exploiting their differences in computing patterns might offer a way to better utilize heterogeneous architectures.

Citations (6)

Summary

We haven't generated a summary for this paper yet.