Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logit Margin Matters: Improving Transferable Targeted Adversarial Attack by Logit Calibration (2303.03680v1)

Published 7 Mar 2023 in cs.CV

Abstract: Previous works have extensively studied the transferability of adversarial samples in untargeted black-box scenarios. However, it still remains challenging to craft targeted adversarial examples with higher transferability than non-targeted ones. Recent studies reveal that the traditional Cross-Entropy (CE) loss function is insufficient to learn transferable targeted adversarial examples due to the issue of vanishing gradient. In this work, we provide a comprehensive investigation of the CE loss function and find that the logit margin between the targeted and untargeted classes will quickly obtain saturation in CE, which largely limits the transferability. Therefore, in this paper, we devote to the goal of continually increasing the logit margin along the optimization to deal with the saturation issue and propose two simple and effective logit calibration methods, which are achieved by downscaling the logits with a temperature factor and an adaptive margin, respectively. Both of them can effectively encourage optimization to produce a larger logit margin and lead to higher transferability. Besides, we show that minimizing the cosine distance between the adversarial examples and the classifier weights of the target class can further improve the transferability, which is benefited from downscaling logits via L2-normalization. Experiments conducted on the ImageNet dataset validate the effectiveness of the proposed methods, which outperform the state-of-the-art methods in black-box targeted attacks. The source code is available at \href{https://github.com/WJJLL/Target-Attack/}{Link}

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub