Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Importance Sampling in Model Predictive Path Integral Control (2303.03441v1)

Published 6 Mar 2023 in eess.SY and cs.SY

Abstract: We introduce the notion of importance sampling under embedded barrier state control, titled Safety Controlled Model Predictive Path Integral Control (SC-MPPI). For robotic systems operating in an environment with multiple constraints, hard constraints are often encoded utilizing penalty functions when performing optimization. Alternative schemes utilizing optimization-based techniques, such as Control Barrier Functions, can be used as a safety filter to ensure the system does not violate the given hard constraints. In contrast, this work leverages the principle of a safety filter but applies it during forward sampling for Model Predictive Path Integral Control. The resulting set of forward samples can remain safe within the domain of the safety controller, increasing sample efficiency and allowing for improved exploration of the state space. We derive this controller through information theoretic principles analogous to Information Theoretic MPPI. We empirically demonstrate both superior sample efficiency, exploration, and system performance of SC-MPPI when compared to Model-Predictive Path Integral Control (MPPI) and Differential Dynamic Programming (DDP) optimizing the barrier state.

Citations (2)

Summary

We haven't generated a summary for this paper yet.