Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Will Affective Computing Emerge from Foundation Models and General AI? A First Evaluation on ChatGPT (2303.03186v1)

Published 3 Mar 2023 in cs.CL and cs.AI

Abstract: ChatGPT has shown the potential of emerging general artificial intelligence capabilities, as it has demonstrated competent performance across many natural language processing tasks. In this work, we evaluate the capabilities of ChatGPT to perform text classification on three affective computing problems, namely, big-five personality prediction, sentiment analysis, and suicide tendency detection. We utilise three baselines, a robust LLM (RoBERTa-base), a legacy word model with pretrained embeddings (Word2Vec), and a simple bag-of-words baseline (BoW). Results show that the RoBERTa trained for a specific downstream task generally has a superior performance. On the other hand, ChatGPT provides decent results, and is relatively comparable to the Word2Vec and BoW baselines. ChatGPT further shows robustness against noisy data, where Word2Vec models achieve worse results due to noise. Results indicate that ChatGPT is a good generalist model that is capable of achieving good results across various problems without any specialised training, however, it is not as good as a specialised model for a downstream task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mostafa M. Amin (6 papers)
  2. Erik Cambria (136 papers)
  3. Björn W. Schuller (153 papers)
Citations (64)