Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Worst-case error bounds for the super-twisting differentiator in presence of measurement noise (2303.03116v2)

Published 6 Mar 2023 in eess.SY and cs.SY

Abstract: The super-twisting differentiator, also known as the first-order robust exact differentiator, is a well known sliding mode differentiator. In the absence of measurement noise, it achieves exact reconstruction of the time derivative of a function with bounded second derivative. This note proposes an upper bound for its worst-case differentiation error in the presence of bounded measurement noise, based on a novel Lipschitz continuous Lyapunov function. It is shown that the bound can be made arbitrarily tight and never exceeds the true worst-case differentiation error by more than a factor of two. A numerical simulation illustrates the results and also demonstrates the non-conservativeness of the proposed bound.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)