Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook (2303.02063v2)

Published 3 Mar 2023 in cs.LG

Abstract: For its robust predictive power (compared to pure physics-based models) and sample-efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a paradigm hybridizing physics-based models and deep neural networks (DNN), has been booming in science and engineering fields. One key challenge of applying PIDL to various domains and problems lies in the design of a computational graph that integrates physics and DNNs. In other words, how physics are encoded into DNNs and how the physics and data components are represented. In this paper, we provide a variety of architecture designs of PIDL computational graphs and how these structures are customized to traffic state estimation (TSE), a central problem in transportation engineering. When observation data, problem type, and goal vary, we demonstrate potential architectures of PIDL computational graphs and compare these variants using the same real-world dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (118)
  1. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
  2. A. Karpatne, G. Atluri, and et al, “Theory-guided data science: A new paradigm for scientific discovery from data,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 10, pp. 2318–2331, 2017.
  3. T. Yu, E. J. Canales-Rodríguez, M. Pizzolato, G. F. Piredda, T. Hilbert, E. Fischi-Gomez, M. Weigel, M. Barakovic, M. B. Cuadra, C. Granziera et al., “Model-informed machine learning for multi-component t2 relaxometry,” Medical Image Analysis, vol. 69, p. 101940, 2021.
  4. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
  5. S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine learning through physics-informed neural networks: Where we are and what’s next,” arXiv preprint arXiv:2201.05624, 2022.
  6. X. Di and R. Shi, “A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning,” Transportation Research Part C: Emerging Technologies, vol. 125, p. 103008, 2021.
  7. K. Huang, X. Di, Q. Du, and X. Chen, “Stabilizing traffic via autonomous vehicles: A continuum mean field game approach,” the 22nd IEEE International Conference on Intelligent Transportation Systems (ITSC) (DOI: 10.1109/ITSC.2019.8917021), 2019.
  8. ——, “Scalable traffic stability analysis in mixed-autonomy using continuum models,” Transportation Research Part C: Emerging Technologies, vol. 111, pp. 616–630, 2020.
  9. Z. Mo, R. Shi, and X. Di, “A physics-informed deep learning paradigm for car-following models,” Transportation research part C: emerging technologies, vol. 130, p. 103240, 2021.
  10. Z. Mo and X. Di, “Uncertainty quantification of car-following behaviors: Physics-informed generative adversarial networks,” in the 28th ACM SIGKDD in conjunction with the 11th International Workshop on Urban Computing (UrbComp2022), 2022.
  11. Y. Wang and M. Papageorgiou, “Real-time freeway traffic state estimation based on extended kalman filter: a general approach,” Transportation Research Part B: Methodological, vol. 39, no. 2, pp. 141–167, 2005.
  12. T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state estimation on highway: A comprehensive survey,” Annual Reviews in Control, vol. 43, pp. 128–151, 2017.
  13. M. Alber, A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold, and E. Kuhl, “Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences,” npj Digital Medicine, vol. 2, no. 1, pp. 1–11, 2019.
  14. A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney, “Characterizing possible failure modes in physics-informed neural networks,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  15. X. Chen, M. Lei, N. Saunier, and L. Sun, “Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  16. X. Chen, J. Yang, and L. Sun, “A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation,” Transportation Research Part C: Emerging Technologies, vol. 117, p. 102673, 2020.
  17. SAS, “The connected vehicle: Big data, big opportunities,” https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/connected-vehicle-107832.pdf, 2015, [Online; accessed 04.30.2022].
  18. K. Chopra, K. Gupta, and A. Lambora, “Future internet: The internet of things-a literature review,” in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 2019, pp. 135–139.
  19. L. Chettri and R. Bera, “A comprehensive survey on internet of things (iot) toward 5g wireless systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, 2020.
  20. K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and cellular network technologies for v2x communications: A survey,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470, 2016.
  21. C. J. Meinrenken, Z. Shou, and X. Di, “Using gps-data to determine optimum electric vehicle ranges: A michigan case study,” Transportation Research Part D: Transport and Environment, vol. 78, p. 102203, 2020.
  22. J. Elbers and J. Zou, “A flexible x-haul network for 5g and beyond,” in 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019, pp. 1–3.
  23. P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey on multi-access edge computing for internet of things realization,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 2961–2991, 2018.
  24. B. Greenshields, W. Channing, H. Miller et al., “A study of traffic capacity,” in Highway research board proceedings, vol. 1935.   National Research Council (USA), Highway Research Board, 1935.
  25. M. J. Lighthill and G. B. Whitham, “On kinematic waves II. A theory of traffic flow on long crowded roads,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 229, no. 1178, pp. 317–345, 1955.
  26. P. I. Richards, “Shock waves on the highway,” Operations Research, vol. 4, no. 1, pp. 42–51, 1956.
  27. H. J. Payne, “Model of freeway traffic and control,” Mathematical Model of Public System, pp. 51–61, 1971.
  28. G. B. Whitham, “Linear and nonlinear waves,” John Wiley & Sons, vol. 42, 1974.
  29. A. Aw, A. Klar, M. Rascle, and T. Materne, “Derivation of continuum traffic flow models from microscopic follow-the-leader models,” SIAM Journal on Applied Mathematics, vol. 63, no. 1, pp. 259–278, 2002.
  30. H. M. Zhang, “A non-equilibrium traffic model devoid of gas-like behavior,” Transportation Research Part B: Methodological, vol. 36, no. 3, pp. 275–290, 2002.
  31. Y. Wang, M. Papageorgiou, and A. Messmer, “Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing,” Transportation Research Part A: Policy and Practice, vol. 42, no. 10, pp. 1340–1358, 2008.
  32. Y. Wang, M. Papageorgiou, A. Messmer, P. Coppola, A. Tzimitsi, and A. Nuzzolo, “An adaptive freeway traffic state estimator,” Automatica, vol. 45, no. 1, pp. 10–24, 2009.
  33. X. Di, H. Liu, and G. Davis, “Hybrid extended kalman filtering approach for traffic density estimation along signalized arterials: Use of global positioning system data,” Transportation Research Record, no. 2188, pp. 165–173, 2010.
  34. L. Mihaylova, R. Boel, and A. Hegiy, “An unscented Kalman filter for freeway traffic estimation,” in Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, Netherlands, 2006.
  35. S. Blandin, A. Couque, A. Bayen, and D. Work, “On sequential data assimilation for scalar macroscopic traffic flow models,” Physica D: Nonlinear Phenomena, vol. 241, no. 17, pp. 1421–1440, 2012.
  36. L. Mihaylova and R. Boel, “A particle filter for freeway traffic estimation,” in 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, 2004, pp. 2106–2111.
  37. G. A. Davis and J. G. Kang, “Estimating destination-specific traffic densities on urban freeways for advanced traffic management,” Transportation Research Record, no. 1457, pp. 143–148, 1994.
  38. S. E. Jabari and H. X. Liu, “A stochastic model of traffic flow: Theoretical foundations,” Transportation Research Part B: Methodological, vol. 46, no. 1, pp. 156–174, 2012.
  39. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.
  40. M. Zhong, P. Lingras, and S. Sharma, “Estimation of missing traffic counts using factor, genetic, neural, and regression techniques,” Transportation Research Part C: Emerging Technologies, vol. 12, no. 2, pp. 139–166, 2004.
  41. D. Ni and J. D. Leonard, “Markov chain Monte Carlo multiple imputation using Bayesian networks for incomplete intelligent transportation systems data,” Transportation Research Record, vol. 1935, no. 1, pp. 57–67, 2005.
  42. S. Tak, S. Woo, and H. Yeo, “Data-driven imputation method for traffic data in sectional units of road links,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1762–1771, 2016.
  43. L. Li, Y. Li, and Z. Li, “Efficient missing data imputing for traffic flow by considering temporal and spatial dependence,” Transportation Research Part C: Emerging Technologies, vol. 34, pp. 108–120, 2013.
  44. H. Tan, Y. Wu, B. Cheng, W. Wang, and B. Ran, “Robust missing traffic flow imputation considering nonnegativity and road capacity,” Mathematical Problems in Engineering, 2014.
  45. X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neural network for traffic speed prediction using remote microwave sensor data,” Transportation Research Part C: Emerging Technologies, vol. 54, pp. 187–197, 2015.
  46. N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic flow prediction,” Transportation Research Part C: Emerging Technologies, vol. 79, pp. 1–17, 2017.
  47. J. Tang, X. Zhang, W. Yin, Y. Zou, and Y. Wang, “Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory,” Journal of Intelligent Transportation Systems, pp. 1–16, 2020.
  48. M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial differential equations,” Journal of Machine Learning Research, vol. 19, no. 1, pp. 932–955, 2018.
  49. M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential equations,” Journal of Computational Physics, vol. 357, pp. 125–141, 2018.
  50. Y. Yang and P. Perdikaris, “Adversarial uncertainty quantification in physics-informed neural networks,” Journal of Computational Physics, vol. 394, pp. 136–152, 2019.
  51. M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis, “Deep learning of vortex-induced vibrations,” Journal of Fluid Mechanics, vol. 861, pp. 119–137, 2019.
  52. Z. Fang and J. Zhan, “Physics-informed neural network framework for partial differential equations on 3D surfaces: Time independent problems,” IEEE Access, 2020.
  53. M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations,” Science, vol. 367, no. 6481, pp. 1026–1030, 2020.
  54. R. Rai and C. K. Sahu, “Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus,” IEEE Access, vol. 8, pp. 71 050–71 073, 2020.
  55. K. Wang, W. Sun, and Q. Du, “A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks,” Computer Methods in Applied Mechanics and Engineering, vol. 373, p. 113514, 2021.
  56. T. Seo, T. Kusakabe, and Y. Asakura, “Traffic state estimation with the advanced probe vehicles using data assimilation,” in 2015 IEEE 18th International Conference on Intelligent Transportation Systems.   IEEE, 2015, pp. 824–830.
  57. M. Cremer and M. Papageorgiou, “Parameter identification for a traffic flow model,” Automatica, vol. 17, no. 6, pp. 837–843, 1981.
  58. S. Fan and B. Seibold, “Data-fitted first-order traffic models and their second-order generalizations: Comparison by trajectory and sensor data,” Transportation Research Record, vol. 2391, no. 1, pp. 32–43, 2013.
  59. A. A. Kurzhanskiy and P. Varaiya, “Active traffic management on road networks: a macroscopic approach,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1928, pp. 4607–4626, 2010.
  60. S. Fan, M. Herty, and B. Seibold, “Comparative model accuracy of a data-fitted generalized aw-rascle-zhang model,” arXiv preprint arXiv:1310.8219, 2013.
  61. W. Deng, H. Lei, and X. Zhou, “Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach,” Transportation Research Part B: Methodological, vol. 57, pp. 132–157, 2013.
  62. D. Ngoduy, “Kernel smoothing method applicable to the dynamic calibration of traffic flow models,” Computer‐Aided Civil and Infrastructure Engineering, vol. 26, no. 6, pp. 420–432, 2011.
  63. J. Huang and S. Agarwal, “Physics informed deep learning for traffic state estimation,” in IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Sept. 20-23, 2020, pp. 3487–3492.
  64. M. Barreau, M. Aguiar, J. Liu, and K. H. Johansson, “Physics-informed learning for identification and state reconstruction of traffic density,” in 60th IEEE Conference on Decision and Control (CDC), Dec. 13-15, 2021, pp. 2653–2658.
  65. R. Shi, Z. Mo, K. Huang, X. Di, and Q. Du, “Physics-informed deep learning for traffic state estimation,” arXiv preprint arXiv:2101.06580, Jan. 17, 2021.
  66. R. Shi, Z. Mo, and X. Di, “Physics informed deep learning for traffic state estimation: A hybrid paradigm informed by second-order traffic models,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, May, 2021, pp. 540–547.
  67. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.
  68. J. Liu, M. Barreau, M. Čičić, and K. H. Johansson, “Learning-based traffic state reconstruction using probe vehicles,” IFAC-PapersOnLine, vol. 54, no. 2, pp. 87–92, 2021.
  69. R. Shi, Z. Mo, K. Huang, X. Di, and Q. Du, “A physics-informed deep learning paradigm for traffic state and fundamental diagram estimation,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11 688–11 698, Aug., 2022.
  70. A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, “Adaptive activation functions accelerate convergence in deep and physics-informed neural networks,” Journal of Computational Physics, vol. 404, p. 109136, 2020.
  71. Y. Li, Z. Zhou, and S. Ying, “Delisa: Deep learning based iteration scheme approximation for solving pdes,” Journal of Computational Physics, vol. 451, p. 110884, 2022.
  72. S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent kernel perspective,” Journal of Computational Physics, vol. 449, p. 110768, 2022.
  73. G. Zhang, Z. Yu, D. Jin, and Y. Li, “Physics-infused machine learning for crowd simulation,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 2439–2449.
  74. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  75. J. Wang, F. Yu, X. Chen, and L. Zhao, “ADMM for efficient deep learning with global convergence,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019, pp. 111–119.
  76. M. Barreau, J. Liu, and K. H. Johanssoni, “Learning-based state reconstruction for a scalar hyperbolic PDE under noisy lagrangian sensing,” in 3rd Conference on Learning for Dynamics and Control (L4DC), June 7-8, 2021, pp. 34––46.
  77. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information Fusion, vol. 76, pp. 243–297, 2021.
  78. D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications of robust optimization,” SIAM review, vol. 53, no. 3, pp. 464–501, 2011.
  79. M. B. Giles, “Multilevel monte carlo path simulation,” Operations Research, vol. 56, no. 3, pp. 607–617, 2008.
  80. Q. Sun, Q. Du, and J. Ming, “Asymptotically compatible schemes for stochastic homogenization,” SIAM Journal on Numerical Analysis, vol. 56, no. 3, pp. 1942–1960, 2018.
  81. Y. Efendiev, T. Hou, and W. Luo, “Preconditioning markov chain monte carlo simulations using coarse-scale models,” SIAM Journal on Scientific Computing, vol. 28, no. 2, pp. 776–803, 2006.
  82. S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control,” PloS one, vol. 11, no. 2, 2016.
  83. F. Dietrich, T. N. Thiem, and I. G. Kevrekidis, “On the koopman operator of algorithms,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 2, pp. 860–885, 2020.
  84. I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint arXiv:1701.00160, 2016.
  85. L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” arXiv preprint arXiv:1605.08803, 2016.
  86. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  87. L. Yang, D. Zhang, and G. E. Karniadakis, “Physics-informed generative adversarial networks for stochastic differential equations,” SIAM Journal on Scientific Computing, vol. 42, no. 1, pp. A292–A317, 2020.
  88. A. Daw, M. Maruf, and A. Karpatne, “Pid-gan: A gan framework based on a physics-informed discriminator for uncertainty quantification with physics,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 237–247.
  89. B. Siddani, S. Balachandar, W. C. Moore, Y. Yang, and R. Fang, “Machine learning for physics-informed generation of dispersed multiphase flow using generative adversarial networks,” Theoretical and Computational Fluid Dynamics, vol. 35, no. 6, pp. 807–830, 2021.
  90. I. Bilionis and N. Zabaras, “Multi-output local gaussian process regression: Applications to uncertainty quantification,” Journal of Computational Physics, vol. 231, no. 17, pp. 5718–5746, 2012.
  91. C. Bajaj, L. McLennan, T. Andeen, and A. Roy, “Robust learning of physics informed neural networks,” arXiv preprint arXiv:2110.13330, 2021.
  92. D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems,” Journal of Computational Physics, vol. 397, p. 108850, 2019.
  93. L. Yang, S. Treichler, T. Kurth, K. Fischer, D. Barajas-Solano, J. Romero, V. Churavy, A. Tartakovsky, M. Houston, M. Prabhat et al., “Highly-scalable, physics-informed gans for learning solutions of stochastic pdes,” in 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS).   IEEE, 2019, pp. 1–11.
  94. Z. Mo, Y. Fu, and X. Di, “Quantifying uncertainty in traffic state estimation using generative adversarial networks,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2022, pp. 2769–2774.
  95. Z. Mo, Y. Fu, D. Xu, and X. Di, “Trafficflowgan: Physics-informed flow based generative adversarial network for uncertainty quantification,” Joint European Conference on Machine Learning and Knowledge Discovery in Database., 2022.
  96. L. Guo, H. Wu, and T. Zhou, “Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models,” Journal of Computational Physics, p. 111202, 2022.
  97. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.
  98. A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Adaptive cruise control design for active congestion avoidance,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 6, pp. 668–683, 2008.
  99. X. Zhou and J. Taylor, “Dtalite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration,” Cogent Engineering, vol. 1, no. 1, p. 961345, 2014.
  100. M. Di Gangi, G. E. Cantarella, R. Di Pace, and S. Memoli, “Network traffic control based on a mesoscopic dynamic flow model,” Transportation Research Part C: Emerging Technologies, vol. 66, pp. 3–26, 2016.
  101. M. J. Lighthill and G. B. Whitham, “On kinematic waves II. A theory of traffic flow on long crowded roads,” Proc. R. Soc. Lond. A, vol. 229, no. 1178, pp. 317–345, 1955.
  102. F. Chinesta, E. Cueto, E. Abisset-Chavanne, J. L. Duval, and F. El Khaldi, “Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data,” Archives of Computational Methods in Engineering, pp. 1–30, 2018.
  103. M. L. Delle Monache, T. Liard, B. Piccoli, R. Stern, and D. Work, “Traffic reconstruction using autonomous vehicles,” SIAM Journal on Applied Mathematics, vol. 79, no. 5, pp. 1748–1767, 2019.
  104. B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity methods in uncertainty propagation, inference, and optimization,” Siam Review, vol. 60, no. 3, pp. 550–591, 2018.
  105. M. Penwarden, S. Zhe, A. Narayan, and R. M. Kirby, “Multifidelity modeling for physics-informed neural networks (pinns),” Journal of Computational Physics, vol. 451, p. 110844, 2022.
  106. M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,” science, vol. 324, no. 5923, pp. 81–85, 2009.
  107. M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho, “Discovering symbolic models from deep learning with inductive biases,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 429–17 442, 2020.
  108. K. Wang, W. Sun, and Q. Du, “A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with ai-guided experimentation,” Computational Mechanics, vol. 64, no. 2, pp. 467–499, 2019.
  109. T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.
  110. Y. Chen, A. L. Friesen, F. Behbahani, A. Doucet, D. Budden, M. Hoffman, and N. de Freitas, “Modular meta-learning with shrinkage,” Advances in Neural Information Processing Systems, vol. 33, pp. 2858–2869, 2020.
  111. O. Fuks and H. A. Tchelepi, “Limitations of physics informed machine learning for nonlinear two-phase transport in porous media,” Journal of Machine Learning for Modeling and Computing, vol. 1, no. 1, 2020.
  112. C. F. Daganzo, “A variational formulation of kinematic waves: basic theory and complex boundary conditions,” Transportation Research Part B: Methodological, vol. 39, no. 2, pp. 187–196, 2005.
  113. E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications,” Computer Methods in Applied Mechanics and Engineering, vol. 362, p. 112790, 2020.
  114. A. F. Psaros, K. Kawaguchi, and G. E. Karniadakis, “Meta-learning pinn loss functions,” Journal of Computational Physics, vol. 458, p. 111121, 2022.
  115. C. Meng, S. Seo, D. Cao, S. Griesemer, and Y. Liu, “When physics meets machine learning: A survey of physics-informed machine learning,” arXiv preprint arXiv:2203.16797, 2022.
  116. K. Ruan and X. Di, “Learning human driving behaviors with sequential causal imitation learning,” the 36th AAAI Conference on Artificial Intelligence, 2022.
  117. K. Ruan, J. Zhang, X. Di, and E. Bareinboim, “Causal imitation learning via inverse reinforcement learning,” the 11th International Conference on Learning Representations, 2022.
  118. J. Ji, J. Wang, Z. Jiang, J. Jiang, and H. Zhang, “Stden: Towards physics-guided neural networks for traffic flow prediction,” 2022.
Citations (18)

Summary

We haven't generated a summary for this paper yet.