Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the complexity of PAC learning in Hilbert spaces (2303.02047v1)

Published 3 Mar 2023 in cs.LG, math.FA, and stat.ML

Abstract: We study the problem of binary classification from the point of view of learning convex polyhedra in Hilbert spaces, to which one can reduce any binary classification problem. The problem of learning convex polyhedra in finite-dimensional spaces is sufficiently well studied in the literature. We generalize this problem to that in a Hilbert space and propose an algorithm for learning a polyhedron which correctly classifies at least $1- \varepsilon$ of the distribution, with a probability of at least $1 - \delta,$ where $\varepsilon$ and $\delta$ are given parameters. Also, as a corollary, we improve some previous bounds for polyhedral classification in finite-dimensional spaces.

Summary

We haven't generated a summary for this paper yet.