Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auto-weighted Multi-view Clustering for Large-scale Data (2303.01983v1)

Published 21 Jan 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Multi-view clustering has gained broad attention owing to its capacity to exploit complementary information across multiple data views. Although existing methods demonstrate delightful clustering performance, most of them are of high time complexity and cannot handle large-scale data. Matrix factorization-based models are a representative of solving this problem. However, they assume that the views share a dimension-fixed consensus coefficient matrix and view-specific base matrices, limiting their representability. Moreover, a series of large-scale algorithms that bear one or more hyperparameters are impractical in real-world applications. To address the two issues, we propose an auto-weighted multi-view clustering (AWMVC) algorithm. Specifically, AWMVC first learns coefficient matrices from corresponding base matrices of different dimensions, then fuses them to obtain an optimal consensus matrix. By mapping original features into distinctive low-dimensional spaces, we can attain more comprehensive knowledge, thus obtaining better clustering results. Moreover, we design a six-step alternative optimization algorithm proven to be convergent theoretically. Also, AWMVC shows excellent performance on various benchmark datasets compared with existing ones. The code of AWMVC is publicly available at https://github.com/wanxinhang/AAAI-2023-AWMVC.

Citations (37)

Summary

We haven't generated a summary for this paper yet.