Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BogieCopter: A Multi-Modal Aerial-Ground Vehicle for Long-Endurance Inspection Applications (2303.01933v2)

Published 3 Mar 2023 in cs.RO

Abstract: The use of Micro Aerial Vehicles (MAVs) for inspection and surveillance missions has proved to be extremely useful, however, their usability is negatively impacted by the large power requirements and the limited operating time. This work describes the design and development of a novel hybrid aerial-ground vehicle, enabling multi-modal mobility and long operating time, suitable for long-endurance inspection and monitoring applications. The design consists of a MAV with two tiltable axles and four independent passive wheels, allowing it to fly, approach, land and move on flat and inclined surfaces, while using the same set of actuators for all modes of locomotion. In comparison to existing multi-modal designs with passive wheels, the proposed design enables a higher ground locomotion efficiency, provides a higher payload capacity, and presents one of the lowest mass increases due to the ground actuation mechanism. The vehicle's performance is evaluated through a series of real experiments, demonstrating its flying, ground locomotion and wall-climbing capabilities, and the energy consumption for all modes of locomotion is evaluated.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. S. Herwitz, L. Johnson, S. Dunagan, R. Higgins, D. Sullivan, J. Zheng, B. Lobitz, J. Leung, B. Gallmeyer, M. Aoyagi, R. Slye, and J. Brass, “Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support,” Computers and Electronics in Agriculture, vol. 44, no. 1, pp. 49–61, 2004.
  2. M. Burri, J. Nikolic, C. Hürzeler, G. Caprari, and R. Siegwart, “Aerial service robots for visual inspection of thermal power plant boiler systems,” in 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), 2012, pp. 70–75.
  3. A.-a. Agha-mohammadi, N. K. Ure, J. P. How, and J. Vian, “Health aware stochastic planning for persistent package delivery missions using quadrotors,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 3389–3396.
  4. M. Basiri, F. Schill, P. U.Lima, and D. Floreano, “Localization of emergency acoustic sources by micro aerial vehicles,” Journal of Field Robotics, vol. 35, no. 2, pp. 187–201, 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21733
  5. S. Waharte and N. Trigoni, “Supporting search and rescue operations with uavs,” in 2010 International Conference on Emerging Security Technologies, 2010, pp. 142–147.
  6. A. Lacaze, “Pegasus transforming uav/ugv hybrid vehicle,” in NDIA Ground Vehicle Systems Engineering And Technology Symposium—Autonomous Ground Systems (AGS) Technical Session, Novi, MI, 2017.
  7. K. Karydis and V. Kumar, “Energetics in robotic flight at small scales,” Interface focus, vol. 7, no. 1, p. 20160088, 2017.
  8. A. Kalantari and M. Spenko, “Modeling and performance assessment of the hytaq, a hybrid terrestrial/aerial quadrotor,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1278–1285, 2014.
  9. D. D. Fan, R. Thakker, T. Bartlett, M. B. Miled, L. Kim, E. Theodorou, and A.-a. Agha-mohammadi, “Autonomous hybrid ground/aerial mobility in unknown environments,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 3070–3077.
  10. Y. Qin, Y. Li, X. Wei, and F. Zhang, “Hybrid aerial ground locomotion with a single passive wheel,” CoRR, vol. abs/2003.09242, 2020. [Online]. Available: https://arxiv.org/abs/2003.09242
  11. M. Pimentel and M. Basiri, “A bimodal rolling-flying robot for micro level inspection of flat and inclined surfaces,” IEEE Robotics and Automation Letters, 2022.
  12. A. Kalantari, T. Touma, L. Kim, R. Jitosho, K. Strickland, B. T. Lopez, and A.-A. Agha-Mohammadi, “Drivocopter: A concept hybrid aerial/ground vehicle for long-endurance mobility,” in 2020 IEEE Aerospace Conference, 2020, pp. 1–10.
  13. M. Yamada, M. Nakao, Y. Hada, and N. Sawasaki, “Development and field test of novel two-wheeled uav for bridge inspections,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 1014–1021.
  14. W. Myeong and H. Myung, “Development of a wall-climbing drone capable of vertical soft landing using a tilt-rotor mechanism,” IEEE Access, vol. 7, pp. 4868–4879, 2019.
  15. K. Kawasaki, Y. Motegi, M. Zhao, K. Okada, and M. Inaba, “Dual connected bi-copter with new wall trace locomotion feasibility that can fly at arbitrary tilt angle,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 524–531.
  16. Y. Qin, W. Xu, A. Lee, and F. Zhang, “Gemini: A compact yet efficient bi-copter uav for indoor applications,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3213–3220, 2020.
  17. N. Meiri and D. Zarrouk, “Flying STAR, a Hybrid Crawling and Flying Sprawl Tuned Robot,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 5302–5308.
  18. W. Mielniczek, “B-unstoppable all terrain tank-quadcopter drone,” 2015. [Online]. Available: https://www.kickstarter.com/projects/2017062404/b-unstoppable
  19. S. Morton and N. Papanikolopoulos, “A small hybrid ground-air vehicle concept,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 5149–5154.
  20. S. Mintchev and D. Floreano, “A multi-modal hovering and terrestrial robot with adaptive morphology,” 2018. [Online]. Available: http://infoscience.epfl.ch/record/255681
  21. K. Tanaka, D. Zhang, S. Inoue, R. Kasai, H. Yokoyama, K. Shindo, K. Matsuhiro, S. Marumoto, H. Ishii, and A. Takanishi, “A design of a small mobile robot with a hybrid locomotion mechanism of wheels and multi-rotors,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017, pp. 1503–1508.
  22. W. Wang, C. y. Li, L. h. Chu, and C. y. Qu, “Study on air-ground amphibious agricultural information collection robot,” in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2016, pp. 938–944.
  23. R. Adarsh and M. M. Dharmana, “Multi-terrain multi-utility robot,” Procedia Computer Science, vol. 133, pp. 651–659, 2018, international Conference on Robotics and Smart Manufacturing (RoSMa2018).
  24. JJRC, “H3.” [Online]. Available: https://www.dronesusermanuals.com/jjrc/jjrc-h3-quadrocopter-with-wheels/
  25. Syma, “X9.” [Online]. Available: https://www.dhgate.com/product/syma-x9-air-land-dual-mode-rc-flying-car/373183748.html
  26. A. Kalantari and M. Spenko, “Design and experimental validation of hytaq, a hybrid terrestrial and aerial quadrotor,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4445–4450.
  27. K. Kawasaki, M. Zhao, K. Okada, and M. Inaba, “Muwa: Multi-field universal wheel for air-land vehicle with quad variable-pitch propellers,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 1880–1885.
  28. S. Mizutani, Y. Okada, C. J. Salaan, T. Ishii, K. Ohno, and S. Tadokoro, “Proposal and experimental validation of a design strategy for a uav with a passive rotating spherical shell,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1271–1278.
  29. S. Sabet, A.-A. Agha-Mohammadi, A. Tagliabue, D. S. Elliott, and P. E. Nikravesh, “Rollocopter: An energy-aware hybrid aerial-ground mobility for extreme terrains,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–8.
  30. A. Agha-mohammadi, A. Tagliabue, S. Schneider, B. Morrell, M. Pavone, J. Hofgartner, I. A. D. Nesnas, R. B. Amini, A. Kalantari, A. Babuscia, and J. I. Lunine, “The shapeshifter: a morphing, multi-agent, multi-modal robotic platform for the exploration of titan (preprint version),” CoRR, vol. abs/2003.08293, 2020. [Online]. Available: https://arxiv.org/abs/2003.08293
  31. N. Takahashi, S. Yamashita, Y. Sato, Y. Kutsuna, and M. Yamada, “All-round two-wheeled quadrotor helicopters with protect-frames for air–land–sea vehicle (controller design and automatic charging equipment),” Advanced Robotics, vol. 29, no. 1, pp. 69–87, 2015.
  32. Parrot, “Rolling Spider,” 2014. [Online]. Available: https://www.amazon.com/Parrot-PF723000-ROLLING-SPIDER/dp/B00KZM53NC
  33. Inkonova, “Tilt Scout,” 2018. [Online]. Available: https://dronemajor.net/brands/inkonova/products/tilt-scout
  34. J. R. Page and P. E. I. Pounds, “The quadroller: Modeling of a uav/ugv hybrid quadrotor,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4834–4841.
  35. K. P. Valavanis, “Advances in unmanned aerial vehicles: state of the art and the road to autonomy,” 2008.
  36. B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter, “Influence of propeller configuration on propulsion system efficiency of multi-rotor unmanned aerial vehicles,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp. 195–201.
  37. “APC propellers performance data.” [Online]. Available: https://www.apcprop.com/technical-information/performance-data/
Citations (2)

Summary

We haven't generated a summary for this paper yet.