Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conflict-Based Model Predictive Control for Scalable Multi-Robot Motion Planning (2303.01619v3)

Published 2 Mar 2023 in cs.RO and cs.MA

Abstract: This paper presents a scalable multi-robot motion planning algorithm called Conflict-Based Model Predictive Control (CB-MPC). Inspired by Conflict-Based Search (CBS), the planner leverages a similar high-level conflict tree to efficiently resolve robot-robot conflicts in the continuous space, while reasoning about each agent's kinematic and dynamic constraints and actuation limits using MPC as the low-level planner. We show that tracking high-level multi-robot plans with a vanilla MPC controller is insufficient, and results in unexpected collisions in tight navigation scenarios. Compared to other variations of multi-robot MPC like joint, prioritized, and distributed, we demonstrate that CB-MPC improves the executability and success rate, allows for closer robot-robot interactions, and reduces the computational cost significantly without compromising the solution quality across a variety of environments. Furthermore, we show that CB-MPC combined with a high-level path planner can effectively substitute computationally expensive full-horizon multi-robot kinodynamic planners.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.
  2. A. Andreychuk, K. Yakovlev, P. Surynek et al., “Multi-agent pathfinding with continuous time,” Artificial Intelligence, p. 103662, 2022.
  3. E. Boyarski, A. Felner, R. Stern et al., “ICBS: Improved conflict-based search algorithm for multi-agent pathfinding,” in International Joint Conference on Artificial Intelligence, 2015.
  4. M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem,” in Seventh Annual Symposium on Combinatorial Search, 2014.
  5. J. Li, A. Felner, E. Boyarski et al., “Improved heuristics for multi-agent path finding with conflict-based search,” in International Joint Conference on Artificial Intelligence, 2019, pp. 442–449.
  6. W. Hönig, T. S. Kumar, L. Cohen et al., “Multi-agent path finding with kinematic constraints,” in International Conference on Automated Planning and Scheduling, 2016.
  7. W. Hönig, S. Kiesel, A. Tinka et al., “Persistent and robust execution of mapf schedules in warehouses,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1125–1131, 2019.
  8. F. E. Schneider and D. Wildermuth, “A potential field based approach to multi robot formation navigation,” in IEEE International Conference on Robotics, Intelligent Systems and Signal, vol. 1, 2003, pp. 680–685.
  9. H. G. Tanner and A. Kumar, “Towards decentralization of multi-robot navigation functions,” in IEEE International Conference on Robotics and Automation, 2005, pp. 4132–4137.
  10. R. Gayle, W. Moss, M. C. Lin, and D. Manocha, “Multi-robot coordination using generalized social potential fields,” in IEEE International Conference on Robotics and Automation, 2009, pp. 106–113.
  11. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  12. M. Čáp, P. Novák, J. Vokřínek, and M. Pěchouček, “Multi-agent RRT*: Sampling-based cooperative pathfinding,” in International Conference on Autonomous Agents and Multi-Agent Systems, 2013, p. 1263–1264.
  13. K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning,” in Algorithmic Foundations of Robotics XI.   Springer, 2015, pp. 591–607.
  14. J. Kottinger, S. Almagor, and M. Lahijanian, “Conflict-based search for multi-robot motion planning with kinodynamic constraints,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022.
  15. R. Shome, K. Solovey, A. Dobson et al., “dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning,” Autonomous Robots, vol. 44, no. 3, pp. 443–467, 2020.
  16. B. Li, Y. Ouyang, Y. Zhang et al., “Optimal cooperative maneuver planning for multiple nonholonomic robots in a tiny environment via adaptive-scaling constrained optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1511–1518, 2021.
  17. Y. Zhou, H. Hu, Y. Liu et al., “A real-time and fully distributed approach to motion planning for multirobot systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2636–2650, 2017.
  18. Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via incremental sequential convex programming,” in IEEE International Conference on Robotics and Automation, 2015, pp. 5954–5961.
  19. C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with distributed model predictive control for multi-robot motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 604–611, 2020.
  20. R. Firoozi, L. Ferranti, X. Zhang et al., “A distributed multi-robot coordination algorithm for navigation in tight environments,” arXiv preprint arXiv:2006.11492, 2020.
  21. G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” in IEEE/RSJ international conference on intelligent robots and systems, 2011, pp. 3260–3267.
  22. S. H. Arul and D. Manocha, “V-rvo: Decentralized multi-agent collision avoidance using voronoi diagrams and reciprocal velocity obstacles,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 8097–8104.
  23. J. Li, A. Tinka, S. Kiesel et al., “Lifelong multi-agent path finding in large-scale warehouses,” in AAAI Conference on Artificial Intelligence, vol. 35, no. 13, 2021, pp. 11 272–11 281.
  24. P. Velagapudi, K. Sycara, and P. Scerri, “Decentralized prioritized planning in large multirobot teams,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 4603–4609.
  25. M. Cáp, P. Novák, M. Seleckỳ et al., “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3822–3829.
  26. M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for prioritized path planning of multi-robot systems,” in IEEE International Conference on Robotics and Automation, vol. 1, 2001, pp. 271–276.
  27. J. Li, M. Ran, and L. Xie, “Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 405–412, 2020.
  28. F. Duchoň, A. Babinec, M. Kajan et al., “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.
  29. L. Ferranti, L. Lyons, R. R. Negenborn et al., “Distributed nonlinear trajectory optimization for multi-robot motion planning,” IEEE Transactions on Control Systems Technology, 2022.
  30. L. Riegger, M. Carlander, N. Lidander et al., “Centralized MPC for autonomous intersection crossing,” in IEEE International Conference on Intelligent Transportation Systems, 2016, pp. 1372–1377.
  31. S. K. Malu, J. Majumdar et al., “Kinematics, localization and control of differential drive mobile robot,” Global Journal of Research In Engineering, vol. 14, no. 1, pp. 1–9, 2014.
  32. J. A. Andersson, J. Gillis, G. Horn et al., “CasADi: A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.
  33. L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization,” Computers & Chemical Engineering, vol. 33, no. 3, pp. 575–582, 2009.
  34. M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari et al., “A real-time approach for chance-constrained motion planning with dynamic obstacles,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3620–3625, 2020.
  35. A. Zaro, A. Tajbakhsh, and A. M. Johnson, “Collision detection for multi-robot motion planning with efficient quad-tree update and skipping,” in arXiv:2307.07602 [cs.MA], 2023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.