Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy (2303.00935v4)

Published 2 Mar 2023 in cs.RO and cs.LG

Abstract: Detection of slip during object grasping and manipulation plays a vital role in object handling. Existing solutions primarily rely on visual information to devise a strategy for grasping. However, for robotic systems to attain a level of proficiency comparable to humans, especially in consistently handling and manipulating unfamiliar objects, integrating artificial tactile sensing is increasingly essential. We introduce a novel physics-informed, data-driven approach to detect slip continuously in real time. We employ the GelSight Mini, an optical tactile sensor, attached to custom-designed grippers to gather tactile data. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinctive features and formulates slip detection as a classification problem. To evaluate our approach, we test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials. Our results show that the best classification algorithm achieves a high average accuracy of 95.61%. We further illustrate the practical application of our research in dynamic robotic manipulation tasks, where our real-time slip detection and prevention algorithm is implemented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. R. Johansson and G. Westling, “Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects,” Experimental Brain Research, vol. 56, pp. 550–564, 1984.
  2. Z. Xia, Z. Deng, B. Fang, Y. Yang, and F. Sun, “A review on sensory perception for dexterous robotic manipulation,” International Journal of Advanced Robotic Systems, vol. 19, no. 2, MAR 2022.
  3. J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger, “Dlr-hand ii: next generation of a dextrous robot hand,” in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 1, 2001, pp. 109–114 vol.1.
  4. D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation., 2006, pp. 1674–1679.
  5. S. H. Jeong, K.-S. Kim, and S. Kim, “Designing anthropomorphic robot hand with active dual-mode twisted string actuation mechanism and tiny tension sensors,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1571–1578, 2017.
  6. N. Wettels, V. Santos, R. Johansson, and G. Loeb, “Biomimetic tactile sensor array,” Advanced Robotics, vol. 22, pp. 829–849, 08 2008.
  7. B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies,” Soft Robotics, vol. 5, no. 2, pp. 216–227, 2018, pMID: 29297773.
  8. P. Griffa, C. Sferrazza, and R. D’Andrea, “Leveraging distributed contact force measurements for slip detection: a physics-based approach enabled by a data-driven tactile sensor,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 4826–4832.
  9. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, 2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/12/2762
  10. S. Dong, W. Yuan, and E. H. Adelson, “Improved gelsight tactile sensor for measuring geometry and slip,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 137–144.
  11. R. Howe and M. Cutkosky, “Sensing skin acceleration for slip and texture perception,” in Proceedings, 1989 International Conference on Robotics and Automation, 1989, pp. 145–150 vol.1.
  12. A. Ikeda, Y. Kurita, J. Ueda, Y. Matsumoto, and T. Ogasawara, “Grip force control for an elastic finger using vision-based incipient slip feedback,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 1, 2004, pp. 810–815 vol.1.
  13. A. Maldonado, H. Alvarez, and M. Beetz, “Improving robot manipulation through fingertip perception,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 2947–2954.
  14. F. Veiga, H. van Hoof, J. Peters, and T. Hermans, “Stabilizing novel objects by learning to predict tactile slip,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5065–5072.
  15. J. W. James, N. Pestell, and N. F. Lepora, “Slip detection with a biomimetic tactile sensor,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3340–3346, 2018.
  16. S. Dong, D. Ma, E. Donlon, and A. Rodriguez, “Maintaining grasps within slipping bounds by monitoring incipient slip,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 3818–3824.
  17. J. Li, S. Dong, and E. H. Adelson, “Slip detection with combined tactile and visual information,” 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7772–7777, 2018.
  18. E. Judd, B. Aksoy, K. M. Digumarti, H. Shea, and D. Floreano, “Slip anticipation for grasping deformable objects using a soft force sensor,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 10 003–10 008.
  19. W. Yuan, R. Li, M. A. Srinivasan, and E. H. Adelson, “Measurement of shear and slip with a gelsight tactile sensor,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 304–311.
  20. S. W. Y. She, A. R. S. Dong, N. Sunil, and E. Adelson, “Cable manipulation with a tactile-reactive gripper,” in Robotics: Science and Systems (RSS), 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.