Polynomial patterns in subsets of large finite fields of low characteristic (2303.00925v1)
Abstract: We prove a low characteristic counterpart to the main result in (Peluse, 2019), establishing power saving bounds for the polynomial Szemer\'{e}di theorem for certain families of polynomials. Namely, we show that if $P_1, \dots, P_m \in (\mathbb{F}p[t])[y]$ satisfy an equidistribution condition, which is a natural variant of the independence condition in (Peluse, 2019) for our context, then there exists $\gamma > 0$ such that for any $q = pk$ and any $A_0, A_1, \dots, A_m \subseteq \mathbb{F}_q$, \begin{align*} \left| \left{ (x,y) \in \mathbb{F}_q2 : x \in A_0, x + P_1(y) \in A_1, \dots, x + P_m(y) \in A_m \right} \right| = q{-(m-1)} \prod{i=0}m{|A_i|} + O_{q \to \infty; P_1, \dots, P_m} \left( |A_0|{1/2} q{3/2 - \gamma} \right). \end{align*} In particular, if $A \subseteq \mathbb{F}q$ contains no pattern ${x, x + P_1(y), \dots, x + P_m(y)}$ of cardinality $m+1$, then \begin{align*} |A| \ll{P_1, \dots, P_m} q{1 - \gamma/ \left( m + \frac{1}{2} \right)}. \end{align*}