Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy (2303.00738v1)

Published 1 Mar 2023 in cs.CR, cs.CY, and cs.HC

Abstract: Differential privacy (DP) is a mathematical privacy notion increasingly deployed across government and industry. With DP, privacy protections are probabilistic: they are bounded by the privacy budget parameter, $\epsilon$. Prior work in health and computational science finds that people struggle to reason about probabilistic risks. Yet, communicating the implications of $\epsilon$ to people contributing their data is vital to avoiding privacy theater -- presenting meaningless privacy protection as meaningful -- and empowering more informed data-sharing decisions. Drawing on best practices in risk communication and usability, we develop three methods to convey probabilistic DP guarantees to end users: two that communicate odds and one offering concrete examples of DP outputs. We quantitatively evaluate these explanation methods in a vignette survey study ($n=963$) via three metrics: objective risk comprehension, subjective privacy understanding of DP guarantees, and self-efficacy. We find that odds-based explanation methods are more effective than (1) output-based methods and (2) state-of-the-art approaches that gloss over information about $\epsilon$. Further, when offered information about $\epsilon$, respondents are more willing to share their data than when presented with a state-of-the-art DP explanation; this willingness to share is sensitive to $\epsilon$ values: as privacy protections weaken, respondents are less likely to share data.

Citations (25)

Summary

We haven't generated a summary for this paper yet.