Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit Bilevel Optimization: Differentiating through Bilevel Optimization Programming (2302.14473v1)

Published 28 Feb 2023 in cs.LG, math.CO, and math.OC

Abstract: Bilevel Optimization Programming is used to model complex and conflicting interactions between agents, for example in Robust AI or Privacy-preserving AI. Integrating bilevel mathematical programming within deep learning is thus an essential objective for the Machine Learning community. Previously proposed approaches only consider single-level programming. In this paper, we extend existing single-level optimization programming approaches and thus propose Differentiating through Bilevel Optimization Programming (BiGrad) for end-to-end learning of models that use Bilevel Programming as a layer. BiGrad has wide applicability and can be used in modern machine learning frameworks. BiGrad is applicable to both continuous and combinatorial Bilevel optimization problems. We describe a class of gradient estimators for the combinatorial case which reduces the requirements in terms of computation complexity; for the case of the continuous variable, the gradient computation takes advantage of the push-back approach (i.e. vector-jacobian product) for an efficient implementation. Experiments show that the BiGrad successfully extends existing single-level approaches to Bilevel Programming.

Citations (4)

Summary

We haven't generated a summary for this paper yet.