Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes (2302.14348v3)

Published 28 Feb 2023 in cs.CV and cs.AI

Abstract: We present Implicit Two Hands (Im2Hands), the first neural implicit representation of two interacting hands. Unlike existing methods on two-hand reconstruction that rely on a parametric hand model and/or low-resolution meshes, Im2Hands can produce fine-grained geometry of two hands with high hand-to-hand and hand-to-image coherency. To handle the shape complexity and interaction context between two hands, Im2Hands models the occupancy volume of two hands - conditioned on an RGB image and coarse 3D keypoints - by two novel attention-based modules responsible for (1) initial occupancy estimation and (2) context-aware occupancy refinement, respectively. Im2Hands first learns per-hand neural articulated occupancy in the canonical space designed for each hand using query-image attention. It then refines the initial two-hand occupancy in the posed space to enhance the coherency between the two hand shapes using query-anchor attention. In addition, we introduce an optional keypoint refinement module to enable robust two-hand shape estimation from predicted hand keypoints in a single-image reconstruction scenario. We experimentally demonstrate the effectiveness of Im2Hands on two-hand reconstruction in comparison to related methods, where ours achieves state-of-the-art results. Our code is publicly available at https://github.com/jyunlee/Im2Hands.

Citations (14)

Summary

We haven't generated a summary for this paper yet.