Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Dillon's property of $(n,m)$-functions (2302.13922v1)

Published 27 Feb 2023 in cs.IT, math.CO, and math.IT

Abstract: Dillon observed that an APN function $F$ over $\mathbb{F}_2{n}$ with $n$ greater than $2$ must satisfy the condition ${F(x) + F(y) + F(z) + F(x + y + z) \,:\, x,y,z \in\mathbb{F}_2n}= \mathbb{F}_2n$. Recently, Taniguchi (2023) generalized this condition to functions defined from $\mathbb{F}_2n$ to $\mathbb{F}_2m$, with $m>n$, calling it the D-property. Taniguchi gave some characterizations of APN functions satisfying the D-property and provided some families of APN functions from $\mathbb{F}_2n$ to $\mathbb{F}_2{n+1}$ satisfying this property. In this work, we further study the D-property for $(n,m)$-functions with $m\ge n$. We give some combinatorial bounds on the dimension $m$ for the existence of such functions. Then, we characterize the D-property in terms of the Walsh transform and for quadratic functions we give a characterization of this property in terms of the ANF. We also give a simplification on checking the D-property for quadratic functions, which permits to extend some of the APN families provided by Taniguchi. We further focus on the class of the plateaued functions, providing conditions for the D-property.

Citations (3)

Summary

We haven't generated a summary for this paper yet.