Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better Generative Replay for Continual Federated Learning (2302.13001v1)

Published 25 Feb 2023 in cs.LG and cs.AI

Abstract: Federated learning is a technique that enables a centralized server to learn from distributed clients via communications without accessing the client local data. However, existing federated learning works mainly focus on a single task scenario with static data. In this paper, we introduce the problem of continual federated learning, where clients incrementally learn new tasks and history data cannot be stored due to certain reasons, such as limited storage and data retention policy. Generative replay based methods are effective for continual learning without storing history data, but adapting them for this setting is challenging. By analyzing the behaviors of clients during training, we find that the unstable training process caused by distributed training on non-IID data leads to a notable performance degradation. To address this problem, we propose our FedCIL model with two simple but effective solutions: model consolidation and consistency enforcement. Our experimental results on multiple benchmark datasets demonstrate that our method significantly outperforms baselines.

Citations (41)

Summary

We haven't generated a summary for this paper yet.