Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Graph Persistence for Updates and Efficiency (2302.12796v2)

Published 24 Feb 2023 in cs.CG and math.AT

Abstract: It is well known that ordinary persistence on graphs can be computed more efficiently than the general persistence. Recently, it has been shown that zigzag persistence on graphs also exhibits similar behavior. Motivated by these results, we revisit graph persistence and propose efficient algorithms especially for local updates on filtrations, similar to what is done in ordinary persistence for computing the vineyard. We show that, for a filtration of length $m$, (i) switches (transpositions) in ordinary graph persistence can be done in $O(\log m)$ time; (ii) zigzag persistence on graphs can be computed in $O(m\log m)$ time, which improves a recent $O(m\log4n)$ time algorithm assuming $n$, the size of the union of all graphs in the filtration, satisfies $n\in\Omega({m\varepsilon})$ for any fixed $0<\varepsilon<1$; (iii) open-closed, closed-open, and closed-closed bars in dimension $0$ for graph zigzag persistence can be updated in $O(\log m)$ time, whereas the open-open bars in dimension $0$ and closed-closed bars in dimension $1$ can be done in $O(\sqrt{m}\,\log m)$ time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.