Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FLSea: Underwater Visual-Inertial and Stereo-Vision Forward-Looking Datasets (2302.12772v1)

Published 24 Feb 2023 in cs.RO and cs.CV

Abstract: Visibility underwater is challenging, and degrades as the distance between the subject and camera increases, making vision tasks in the forward-looking direction more difficult. We have collected underwater forward-looking stereo-vision and visual-inertial image sets in the Mediterranean and Red Sea. To our knowledge there are no other public datasets in the underwater environment acquired with this camera-sensor orientation published with ground-truth. These datasets are critical for the development of several underwater applications, including obstacle avoidance, visual odometry, 3D tracking, Simultaneous Localization and Mapping (SLAM) and depth estimation. The stereo datasets include synchronized stereo images in dynamic underwater environments with objects of known-size. The visual-inertial datasets contain monocular images and IMU measurements, aligned with millisecond resolution timestamps and objects of known size which were placed in the scene. Both sensor configurations allow for scale estimation, with the calibrated baseline in the stereo setup and the IMU in the visual-inertial setup. Ground truth depth maps were created offline for both dataset types using photogrammetry. The ground truth is validated with multiple known measurements placed throughout the imaged environment. There are 5 stereo and 8 visual-inertial datasets in total, each containing thousands of images, with a range of different underwater visibility and ambient light conditions, natural and man-made structures and dynamic camera motions. The forward-looking orientation of the camera makes these datasets unique and ideal for testing underwater obstacle-avoidance algorithms and for navigation close to the seafloor in dynamic environments. With our datasets, we hope to encourage the advancement of autonomous functionality for underwater vehicles in dynamic and/or shallow water environments.

Citations (13)

Summary

We haven't generated a summary for this paper yet.