Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Limitations of Physics-informed Deep Learning: Illustrations Using First Order Hyperbolic Conservation Law-based Traffic Flow Models (2302.12337v1)

Published 23 Feb 2023 in cs.LG and math.AP

Abstract: Since its introduction in 2017, physics-informed deep learning (PIDL) has garnered growing popularity in understanding the evolution of systems governed by physical laws in terms of partial differential equations (PDEs). However, empirical evidence points to the limitations of PIDL for learning certain types of PDEs. In this paper, we (a) present the challenges in training PIDL architecture, (b) contrast the performance of PIDL architecture in learning a first order scalar hyperbolic conservation law and its parabolic counterpart, (c) investigate the effect of training data sampling, which corresponds to various sensing scenarios in traffic networks, (d) comment on the implications of PIDL limitations for traffic flow estimation and prediction in practice. Detailed in the case study, we present the contradistinction in PIDL results between learning the traffic flow model (LWR PDE) and its variation with diffusion. The outcome indicates that PIDL experiences significant challenges in learning the hyperbolic LWR equation due to the non-smoothness of its solution. On the other hand, the architecture with parabolic PDE, augmented with the diffusion term, leads to the successful reassembly of the density data even with the shockwaves present.

Citations (16)

Summary

We haven't generated a summary for this paper yet.