Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Catastrophic Overfitting in Fast Adversarial Training: A Self-fitting Perspective (2302.11963v2)

Published 23 Feb 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Although fast adversarial training provides an efficient approach for building robust networks, it may suffer from a serious problem known as catastrophic overfitting (CO), where multi-step robust accuracy suddenly collapses to zero. In this paper, we for the first time decouple single-step adversarial examples into data-information and self-information, which reveals an interesting phenomenon called "self-fitting". Self-fitting, i.e., the network learns the self-information embedded in single-step perturbations, naturally leads to the occurrence of CO. When self-fitting occurs, the network experiences an obvious "channel differentiation" phenomenon that some convolution channels accounting for recognizing self-information become dominant, while others for data-information are suppressed. In this way, the network can only recognize images with sufficient self-information and loses generalization ability to other types of data. Based on self-fitting, we provide new insights into the existing methods to mitigate CO and extend CO to multi-step adversarial training. Our findings reveal a self-learning mechanism in adversarial training and open up new perspectives for suppressing different kinds of information to mitigate CO.

Citations (4)

Summary

We haven't generated a summary for this paper yet.