Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Device Tuning for Multi-Task Large Model (2302.10820v1)

Published 21 Feb 2023 in cs.CV

Abstract: Unsupervised pre-training approaches have achieved great success in many fields such as Computer Vision (CV), NLP and so on. However, compared to typical deep learning models, pre-training or even fine-tuning the state-of-the-art self-attention models is extremely expensive, as they require much more computational and memory resources. It severely limits their applications and success in a variety of domains, especially for multi-task learning. To improve the efficiency, we propose Device Tuning for the efficient multi-task model, which is a massively multitask framework across the cloud and device and is designed to encourage learning of representations that generalize better to many different tasks. Specifically, we design Device Tuning architecture of a multi-task model that benefits both cloud modelling and device modelling, which reduces the communication between device and cloud by representation compression. Experimental results demonstrate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.