Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Effect of Multi-step Ascent in Sharpness-Aware Minimization (2302.10181v1)

Published 27 Jan 2023 in cs.LG

Abstract: Recently, Sharpness-Aware Minimization (SAM) has shown state-of-the-art performance by seeking flat minima. To minimize the maximum loss within a neighborhood in the parameter space, SAM uses an ascent step, which perturbs the weights along the direction of gradient ascent with a given radius. While single-step or multi-step can be taken during ascent steps, previous studies have shown that multi-step ascent SAM rarely improves generalization performance. However, this phenomenon is particularly interesting because the multi-step ascent is expected to provide a better approximation of the maximum neighborhood loss. Therefore, in this paper, we analyze the effect of the number of ascent steps and investigate the difference between both single-step ascent SAM and multi-step ascent SAM. We identify the effect of the number of ascent on SAM optimization and reveal that single-step ascent SAM and multi-step ascent SAM exhibit distinct loss landscapes. Based on these observations, we finally suggest a simple modification that can mitigate the inefficiency of multi-step ascent SAM.

Citations (9)

Summary

We haven't generated a summary for this paper yet.