Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernelizing Temporal Exploration Problems (2302.10110v1)

Published 20 Feb 2023 in cs.CC

Abstract: We study the kernelization of exploration problems on temporal graphs. A temporal graph consists of a finite sequence of snapshot graphs $\mathcal{G}=(G_1, G_2, \dots, G_L)$ that share a common vertex set but might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short) introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e., the agent can move along the edges of a snapshot graph with infinite speed. The exploration must at the latest be completed in the last snapshot graph. The optimization variant of this problem is the $k$-arb NS-TEXP problem, where the agent's task is to visit at least $k$ vertices of the temporal graph. We show that under standard computational complexity assumptions, neither of the problems NS-TEXP nor $k$-arb NS-TEXP allow for polynomial kernels in the standard parameters: number of vertices $n$, lifetime $L$, number of vertices to visit $k$, and maximal number of connected components per time step $\gamma$; as well as in the combined parameters $L+k$, $L + \gamma$, and $k+\gamma$. On the way to establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner. We also initiate the study of structural kernelization by identifying a new parameter of a temporal graph $p(\mathcal{G}) = \sum_{i=1}{L} (|E(G_i)|) - |V(G)| +1$. Informally, this parameter measures how dynamic the temporal graph is. Our main algorithmic result is the construction of a polynomial (in $p(\mathcal{G})$) kernel for the more general Weighted $k$-arb NS-TEXP problem, where weights are assigned to the vertices and the task is to find a temporal walk of weight at least $k$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.