Exponentially stable breather solutions in nonautonomous dissipative nonlinear Schrödinger lattices (2302.09869v2)
Abstract: We consider damped and forced discrete nonlinear Schr\"odinger equations on the lattice $\mathbb{Z}$. First we establish the existence of periodic and quasiperiodic breather solutions for periodic and quasiperiodic driving, respectively. Notably, quasiperiodic breathers cannot exist in the system without damping and driving. Afterwards the existence of a global uniform attractor for the dissipative dynamics of the system is shown. For strong dissipation we prove that the global uniform attractor has finite fractal dimension and consists of a single trajectory that is confined to a finite dimensional subspace of the infinite dimensional phase space, attracting any bounded set in phase space exponentially fast. Conclusively, for strong damping and periodic (quasiperiodic) forcing the single periodic (quasiperiodic) breather solution possesses a finite number of modes and is exponentially stable.