Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimates of partial derivatives for harmonic functions on the unit disc (2302.09623v1)

Published 19 Feb 2023 in math.CV

Abstract: Let $f = P[F]$ denote the Poisson integral of $F$ in the unit disk $\mathbb{D}$ with $F$ is an absolute continuous in the unit circle $\mathbb{T}$ and $\dot{F}\in Lp(\mathbb{T})$, where $\dot{F}(e{it}) = \frac{d}{dt} F(e{it})$ and $p \in [1,\infty]$. Recently, Chen et al. (J. Geom. Anal., 2021) extended Zhu's results (J. Geom. Anal., 2020) and proved that (i) if $f$ is a harmonic mapping and $1 \leq p < \infty$, then $f_z$ and $\overline{f_{\overline{z}}} \in Bp(\mathbb{D})$, the Bergman spaces of $\mathbb{D}$. Moreover, (ii) under additional conditions as $f$ being harmonic quasiregular mapping in \cite{Zhu} or $f$ being harmonic elliptic mapping in \cite{CPW}, they proved that $f_z$ and $\overline{f_{\overline{z}}}\in Hp(\mathbb{D})$, the Hardy space of $\mathbb{D}$, for $1 \leq p \leq \infty$. The aim of this paper is to extend these results by showing that (ii) holds for $p\in(1,\infty)$ without any extra conditions and for $p=1$ or $p=\infty$, $f_z$ and $\overline{f_{\bar{z}}}\in Hp(\mathbb{D})$ if and only if $H(\dot{F})\in Lp(\mathbb{T})$, the Hilbert transform of $\dot{F}$ and in that case, it yields $zf_z=P[\frac{\dot{F}+iH(\dot{F})}{2i}]$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.