Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyneter: Hybrid Network Transformer for Object Detection (2302.09365v1)

Published 18 Feb 2023 in cs.CV and cs.AI

Abstract: In this paper, we point out that the essential differences between CNN-based and Transformer-based detectors, which cause the worse performance of small objects in Transformer-based methods, are the gap between local information and global dependencies in feature extraction and propagation. To address these differences, we propose a new vision Transformer, called Hybrid Network Transformer (Hyneter), after pre-experiments that indicate the gap causes CNN-based and Transformer-based methods to increase size-different objects result unevenly. Different from the divide and conquer strategy in previous methods, Hyneters consist of Hybrid Network Backbone (HNB) and Dual Switching module (DS), which integrate local information and global dependencies, and transfer them simultaneously. Based on the balance strategy, HNB extends the range of local information by embedding convolution layers into Transformer blocks, and DS adjusts excessive reliance on global dependencies outside the patch.

Citations (3)

Summary

We haven't generated a summary for this paper yet.