Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Legendre-Gauss Pseudospectral Collocation Method for Trajectory Optimization in Second Order Systems (2302.09036v1)

Published 17 Feb 2023 in cs.RO and math.OC

Abstract: Pseudospectral collocation methods have proven to be powerful tools to solve optimal control problems. While these methods generally assume the dynamics is given in the first order form $\dot{x} = f (x, u, t)$, where x is the state and u is the control vector, robotic systems are typically governed by second order ODEs of the form $\ddot{q} = g(q, \dot{q}, u, t)$, where q is the configuration. To convert the second order ODE into a first order one, the usual approach is to introduce a velocity variable v and impose its coincidence with the time derivative of q. Lobatto methods grant this constraint by construction, as their polynomials describing the trajectory for v are the time derivatives of those for q, but the same cannot be said for the Gauss and Radau methods. This is problematic for such methods, as then they cannot guarantee that $\ddot{q} = g(q, \dot{q}, u, t)$ at the collocation points. On their negative side, Lobatto methods cannot be used to solve initial value problems, as given the values of u at the collocation points they generate an overconstrained system of equations for the states. In this paper, we propose a Legendre-Gauss collocation method that retains the advantages of the usual Lobatto, Gauss, and Radau methods, while avoiding their shortcomings. The collocation scheme we propose is applicable to solve initial value problems, preserves the consistency between the polynomials for v and q, and ensures that $\ddot{q} = g(q, \dot{q}, u, t)$ at the collocation points.

Citations (2)

Summary

We haven't generated a summary for this paper yet.