Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Behavior Graph Neural Networks for Recommender System (2302.08678v1)

Published 17 Feb 2023 in cs.IR

Abstract: Recommender systems have been demonstrated to be effective to meet user's personalized interests for many online services (e.g., E-commerce and online advertising platforms). Recent years have witnessed the emerging success of many deep learning-based recommendation models for augmenting collaborative filtering architectures with various neural network architectures, such as multi-layer perceptron and autoencoder. However, the majority of them model the user-item relationship with single type of interaction, while overlooking the diversity of user behaviors on interacting with items, which can be click, add-to-cart, tag-as-favorite and purchase. Such various types of interaction behaviors have great potential in providing rich information for understanding the user preferences. In this paper, we pay special attention on user-item relationships with the exploration of multi-typed user behaviors. Technically, we contribute a new multi-behavior graph neural network (MBRec), which specially accounts for diverse interaction patterns as well as the underlying cross-type behavior inter-dependencies. In the MBRec framework, we develop a graph-structured learning framework to perform expressive modeling of high-order connectivity in behavior-aware user-item interaction graph. After that, a mutual relation encoder is proposed to adaptively uncover complex relational structures and make aggregations across layer-specific behavior representations. Through comprehensive evaluation on real-world datasets, the advantages of our MBRec method have been validated under different experimental settings. Further analysis verifies the positive effects of incorporating the multi-behavioral context into the recommendation paradigm. Additionally, the conducted case studies offer insights into the interpretability of user multi-behavior representations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lianghao Xia (65 papers)
  2. Chao Huang (244 papers)
  3. Yong Xu (432 papers)
  4. Peng Dai (46 papers)
  5. Liefeng Bo (84 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.