Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composition operators on weighted Hardy spaces of polynomial growth (2302.08233v1)

Published 16 Feb 2023 in math.FA

Abstract: In the present paper, we study the composition operators acting on weighted Hardy spaces of polynomial growth, which are concerned with norms, spectra and (semi-)Fredholmness. Firstly, we estimate the norms of the composition operators with symbols of disk automorphisms. Secondly, we discuss the spectra of the composition operators with symbols of disk automorphisms. In particular, it is proven of that the spectrum of a composition operator with symbol of any parabolic disk automorphism is always the unit circle. Thirdly, we consider the Fredholmness of the composition operator $C_{\varphi}$ with symbol $\varphi$ which is an analytic self-map on the closed unit disk. We prove that $C_{\varphi}$ acting on a weighted Hardy space of polynomial growth has closed range (semi-Fredholmness) if and only if $\varphi$ is a finite Blaschke product. Furthermore, it is obtained that $C_{\varphi}$ is Fredholm if and only if $\varphi$ is a disk automorphism.

Citations (1)

Summary

We haven't generated a summary for this paper yet.